Color Image Steganalysis Based on Steerable Gaussian Filters Bank

Hasan ABDULRAHMAN¹, <u>Marc CHAUMONT</u>^{2,3,4}, Philippe MONTESINOS¹, Baptiste MAGNIER¹
(1) Ecole des Mines d'Alès, France
(2) University of Nîmes, France
(3) University Montpellier, France
(4) CNRS, Montpellier, France

June 7, 2016

ACM workshop on Information Hiding and Multimedia Security, Vigo, Galicia, Spain, June 20-22, 2016.

Marc CHAUMONT

Steerable Gaussian-CRM

$Steganography\ /\ Steganalysis$

Color steganalysis

Few dates and references

- 2013, The color steganography / steganalysis could be explored (a real world problem) [14],
- 2014, The CFA traces can be used: [15], CFARM [9],
- 2015, The correlation between color channels can be used:CRM [10], GCRM [2].
- 14 <u>Real World</u>: " Moving steganography and steganalysis from the laboratory into the real world, " A. D. Ker, P. Bas, R. Böhme, R. Cogranne, S. Craver, T. Filler, J. Fridrich, and T. Pevný, IH&MMSec'2013, Montpellier, France, June 17-19, 2013.
- 15 "Steganalysis in technicolor" boosting ws detection of stego images from CFA-interpolated covers, " M. Kirchner and R. Bohme, ICASSP'2014, Florence, Italy, May 2014.
- 9 CFA Rich Model (CFARM): " CFA-aware features for steganalysis of color images, " M. Goljan and J. Fridrich, IS&T/SPIE Electronic Imaging 2015, San Francisco, CA, USA, Feb. 2014.
- 10 Color Rich Model (CRM): " Rich model for steganalysis of color images, " M. Goljan, J. Fridrich, and R. Cogranne, WIFS'2014, Atlanta, GA, USA, Dec. 2014.
- 2 Geometric Rich Model (GRM): " Color images steganalysis using rgb channel geometric transformation measures, " H. Abdulrahman, M. Chaumont, P. Montesinos, and B. Magnier, Wiley Journal, Feb. 2016.

Proposition

In the rich model method, a residual is computed for each pixel:

$$\mathbf{R}(x,y) = \hat{I}(x,y)(\mathcal{N}(x,y)) - c \cdot I(x,y).$$

Proposition

- Define the residual as a function of a gradient and a tangent,
- $\bullet \rightarrow$ Use more precise filters than those used in SRM.

Remark: The proposition may also be applied to grey-level images.

Why using Steerable Gaussian Filters?

The facts...

- Filters bank allows to better detect image features such as edges,
- The steerable filters are one of the most popular solution,
- Freeman and Adelson [5] have proposed steerable filters directed at specific angles built with a linear combination of Gaussian derivatives.

\rightarrow A finer computation of magnitude of the gradient and the tangent!

[5] W. T. Freeman and E. H. Adelson, " The design and use of steerable filters," in <u>IEEE Trans. on Pattern Analysis &</u> Machine Intelligence, Vol.13(9):pp.891–906, 1991.

Definition of the Steerable Gaussian Filters (1)

Let us note the basic derivatives of Gaussian filters $\partial \mathcal{G}_{\sigma}/\partial x$ and $\partial \mathcal{G}_{\sigma}/\partial y$ along the x-axis and y-axis at position (x, y) in the image:

$$\begin{cases} \frac{\partial \mathcal{G}_{\sigma}(x,y)}{\partial x} &= \frac{-x}{2\pi\sigma^{4}} \cdot e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}} \\ \frac{\partial \mathcal{G}_{\sigma}(x,y)}{\partial y} &= \frac{-y}{2\pi\sigma^{4}} \cdot e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}, \end{cases}$$

with σ the standard-deviation of the Gaussian filter.

(1)

Definition of the Steerable Gaussian Filters (2)

The first order directional Gaussian derivative $\mathcal{G}_{\sigma,\theta}$ at an angle θ can be expressed as [5]:

$$\mathcal{G}_{\sigma,\theta}(x,y,\sigma) = \cos(\theta) \cdot \frac{\partial \mathcal{G}_{\sigma}}{\partial x}(x,y) + \sin(\theta) \cdot \frac{\partial \mathcal{G}_{\sigma}}{\partial y}(x,y).$$
(2)

 \rightarrow Possible to build a filter kernel for a given angle θ

 \rightarrow ... then to apply a convolution and to find the derivative for that angle.

Illustration (1): A Steerable Gaussian Kernel

A kernel with θ_m its kernel angle.

Illustration (2): Steerable Gaussian Kernels

- $\sigma = 0.7$, filter support size = 3 \times 3 pixels,
- Rotation step $= \Delta \theta = 10^{\circ}$,
- Rotation range $= \theta \in \{0^{\circ}, ..., 180^{\circ} \Delta\theta\}$,
- Leads to 18 filters (Dresden and BOSSBase, PPM demosaicking, and cropping)

Definition of the Steerable Gaussian Filters (3)

Given σ and θ , an image derivative $I_{\sigma,\theta}$ is obtained by convolving the original gray-scale image I with the oriented Gaussian kernels $\mathcal{G}_{\sigma,\theta}$:

$$I_{\sigma,\theta}(x,y) = (I * \mathcal{G}_{\sigma,\theta})(x,y).$$
(3)

The gradient magnitude $\|\nabla I(x, y)\|$ equals to the maximum absolute value response of $\mathcal{G}_{\sigma,\theta}$ for the different angles :

$$\begin{aligned} \|\nabla I(x,y)\| &= \max_{\theta \in [0,180[} (|I_{\sigma,\theta}(x,y)|), \qquad (4) \\ \theta_m &= \arg\max_{\theta \in [0,180[} (|I_{\sigma,\theta}(x,y)|). \qquad (5) \end{aligned}$$

 θ_m is the kernel angle.

An interesting complementary measure

A fact...

• The modifications due to embedding will preferentially occur along the curves of constant intensity.

 \rightarrow Let us also consider the tangent vector ... that is to say the derivative value at angle $(\theta_m + 90^\circ) \, [180^\circ]$

Resume

- For a color image, each channel is considered separately.
- A gradient magnitude per channel ($|R_{\sigma,\theta_m}|$ for the red, and so on...)
- A tangent derivative per channel $(R_{\sigma,(\theta_m+90)[180^\circ]}(x,y) \dots)$

Then,

- quantize,
- truncate,
- compute triplets co-occurence matrices for directions $\in \{ \rightarrow, \leftarrow, \uparrow, \downarrow, \nearrow, \checkmark, \checkmark, \checkmark, \checkmark, \checkmark, \checkmark \}$,
- and apply a SPAM merging process.

Features: "Steerable Gaussian - Color Rich Model (SGRM)"

Our SGRM features are made of:

- 18 157 features from CRM [10],
- 2 808 features from gradient magnitude images ($T \in \{2,3\}$),
- 1 598 features from tangent derivative images ($\mathcal{T}\in\{1,2,3\}$ and for T=3 there is a fusion of matrices),

Feature vector dimension = 22563.

[10] M. Goljan, J. Fridrich, and R. Cogranne., "Rich model for steganalysis of color images," in <u>Proc. IEEE Int. Workshop on</u> Inf. Forensics Security, Atlanta, GA, USA, pages 185–190, Dec. 2014.

Experimental Protocol

10 000 color images of size 512 \times 512:

- 3500 Nikon Raw Color images from Dresden Image Database,
- 1000 Canon Raw color images from Break Our Steganographic System Database,
- Patterned Pixel Grouping (PPM) demosaicking,
- Randomly cropped images (the left-up pixel has a non interpolated Red value) of size 512 \times 512.

Embedding algorithms:

- S-UNIWARD,
- WOW,
- Synch-HILL,
- Payload sizes $\in \{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5\}$ Bit Per Channel,
- Same proportion in each channel.

Performance Evaluation

We use the testing error under equal priors:

$$ar{P}_{E} = \min_{P_{FA}} rac{1}{2} \left[P_{FA} + P_{MD} \left(P_{FA}
ight)
ight],$$

with P_{FA} the false alarm probability, and P_{MD} the missed detection probability.

- 10 different splits with 10 000 pairs of covers/stegos for the learning and for the test,
- The Ensemble Classifier for learnings/tests,
- \bar{P}_E is the average testing error over 10 tests.

Results: S-UNIWARD

Results: WOW

Results: Synch-HILL

Discussion

- A fine estimation of the gradient magnitude and the derivate for the tangent increases the detection of 2-3% compared to CRM.
- This is the most efficient approach among the modern approaches whose feature vector dimensions \approx 20 000,
- The concatenation of GCRM and SGRM does not significantly improve the results (<1%),

Conclusion

- Steerable Gaussian Filter for a precise estimation of gradients and tangents,
- The feature set is added to the CRM set,
- The best results for color steganalysis on a color database whose RAW images have been demoisaicked with PPM.
- Some trivial additional tests (color or not) can be done,
- Open issues for color steganography:
 - embedding with a global optimized approach,
 - a MiPOD-like embedding?
 - synchronization of the selection channel (see [23] CMD-Color),
 - JPEG and color (color space, sampling, quantization,...)
- Open issues for color steganalysis:
 - How to better take into account the correlation between channels?,
 - What are the results with an Adaptive steganalysis (Selection-Channel-Aware steganalysis)?