On Testing Constraint Programs

Nadjib Lazaar!, Arnaud Gotlieb!, and Yahia Lebbah?

LINRIA Rennes Bretagne Atlantique, Campus Beaulieu, 35042 Rennes, France
{lazaar.nadjib,arnaud.gotlieb}@irisa.fr
2 Université d’Oran Es-Senia, Lab. LITIO, B.P. 1524 EL-M’Naouar,
31000 Oran, Algerie
Université de Nice—Sophia Antipolis, I3S-CNRS, France
ylebbah@gmail.com

Abstract. The success of several constraint-based modeling languages
such as OPL, ZINC, or COMET, appeals for better software engineer-
ing practices, particularly in the testing phase. This paper introduces a
testing framework enabling automated test case generation for constraint
programming. We propose a general framework of constraint program de-
velopment which supposes that a first declarative and simple constraint
model is available from the problem specifications analysis. Then, this
model is refined using classical techniques such as constraint reformu-
lation, surrogate and global constraint addition, or symmetry-breaking
to form an improved constraint model that must be thoroughly tested
before being used to address real-sized problems. We think that most of
the faults are introduced in this refinement step and propose a process
which takes the first declarative model as an oracle for detecting non-
conformities. We derive practical test purposes from this process to gen-
erate automatically test data that exhibit non-conformities. We imple-
mented this approach in a new tool called CPTEST that was used to
automatically detect non-conformities on two classical benchmark pro-
grams, namely the Golomb rulers and the car-sequencing problem.

1 Introduction

Constraint programs such as those written in modern Constraint Programmin

languages and platforms (e.g. OPIE, COME’I@, ZINC ﬁ, CHOC(ﬂ, GECODEH?,
...), aim at solving industrial combinatorial problems that arise in optimiza-
tion, planning, or scheduling. Recently, a new trend has emerged that propose
also to use CP programs to address critical applications in e-Commerce [5], air-
traffic control and management [3J6], and critical software development [TI/4].
While constraint program debugging drew the attention of some researchers,
few supports in terms of software engineering and testing have been proposed to

www.ilog.com/products/oplstudio/
www.dynadec.com/support/downloads/
www.gl2.cs.mu.oz.au/
choco.sourceforge.net

www.gecode.org

S

ot

D. Cohen (Ed.): CP 2010, LNCS 6308, pp. 330-[344] 2010.
© Springer-Verlag Berlin Heidelberg 2010

On Testing Constraint Programs 331

help verify critical constraint programs. Automatic debugging of constraints pro-
grams has been an important topic of the OADymPPagﬁ project, that resulted
in the definition of generic trace models [2I7], the development of post-mortem
trace analyzers, such as Codeine for Prolog, Morphine [7] for Mercury, ILOG
GentradCP, or JPalm/JChoco. These models and tools help understand con-
straint programs and contribute to their optimization and correction, but they
are not dedicated to systematic fault detection. Indeed, functional fault detec-
tion requires the definition of a reference (called an oracle in software testing) in
order to check the conformity between an implementation and its reference[IT].
Automatic fault detection also requires the definition of test purpose to decide
when to stop testing[I2]. Whereas conventional software development benefits
from research advances in software verification (including static analysis, model
checking or automated test data generation), developers of constraint programs
are still confined to perform systematic verification by hand.

Automatic constraint program testing cannot be easily handled by existing
testing approaches because of the two following reasons: firstly, constraint pro-
grams are intrinsically non-deterministic as they represent sets of solutions and
conventional definitions of conformity do not apply ; secondly, the refinement
process of constraint programs is specific to CP. Indeed, developers usually start
with an initial declarative constraint model of the problem, which faithfully
translates the problem specifications, without granting interest to its perfor-
mances. As this model cannot handle large-sized instances of the problem, they
exploit several refinement techniques to build an improved model. For exam-
ple, usual refinement techniques include the use of dedicated data structures,
constraint reformulation, global constraints addition, redundant and surrogate
constraint addition, as well as constraints which break symmetries (these con-
straints usually improve considerably the effectiveness of the solving process).
The refinement process, carried out by the developer, is an error-prone process
and we believe that most of the faults are introduced during this step.

In this article, we propose a testing framework for checking the correctness
of a constraint program implementation. The oracle for the constraint program
under test is an initial declarative model considered to be valid w.r.t. the user
requirements. Our framework is based on the definition of four distinct confor-
mity relations to handle constraint satisfaction problems as well as optimiza-
tion problems. A practical consequence of these definitions is the proposal of
test purposes for evaluating the conformance of constraint programs. Note that
this paper does not address another essential topic of CP verification which
is the correction of solvers or optimizers. We propose an algorithm for check-
ing the correction of the CP program under test that solves a set of derived
constraint problems able to exhibit non-conformities. We implemented our ap-
proach in a tool called CPTEST that seeks non-conformities in OPL programs.
For evaluating the proposed testing process, CPTEST was used to find non-
conformities in various faulty OPL constraint programs of the Golomb rulers and

5 contraintes/OADymPPaC/

332 N. Lazaar, A. Gotlieb, and Y. Lebbah

the car-sequencing problem. It was also used to assess the conformity for small
instances of the problem.

The rest of the paper is organized as follows: Sec. [illustrates our testing
framework on a simple case in order to show a typical non-conformity case.
Sec. Bl gives the definition of conformity relations required in the framework. In
Sec. M, the testing process we derive from these definitions is introduced and
illustrated on a simple example. Sec. [presents the CPTEST tool and details
our experimental evaluation. Finally, Sec. [0l concludes the paper and draws some
perspectives to this work.

2 An Illustrative Example

Let us illustrate some of the refinement techniques on the classical problem
of the Golomb rulers, which has various applications in fields such as Radio
communications or X-Ray crystallography.

A Golomb ruler [§] is a set of m marks 0 = 27 < 23 < ... < &, such as
m(m — 1)/2 distances {z; — z;| 1 < i < j < m} are distinct. A ruler is of
order m if it contains m marks, and it is of length x,,. The goal is to find a
ruler of order m with minimal length (minimize x,,). A declarative model of
this problem is given in part A of Fig[l] while part B presents a refined and
improved model. It is easy to convince a human that model A actually solves the
Golomb rulers problem, but this is much more difficult for model B. Indeed, model

int m=...; int m=...;
dvar int+ x[1..m]; dvar int x[1..m] in O..m*m;
minimize x[m]; tuple indexerTuple { int i; int j;}
subject to { {indexerTuple} indexes={<i,j>|i,j in 1..m: i < j};
cl: forall (i in 1..m-1) dvar int d[indexes];
x[i] < x[i+1]; minimize x[m];
c2: forall (i,j,k,1 in 1..m : subject to {
(1< j&& k<1l ccl: forall (i in 1..m-1)
@d@tr=x1l3!=1) x[i] < x[i+1];
x[j1 - x[i] '= x[1] - x[k]; cc2: forall(ind in indexes)
} d[ind] == x[ind.i]-x[ind.j];
cc3: x[1]=0;

ccd: x[m] >= (m * (m - 1)) / 2;
// cc5: allDifferent(all(ind in indexes) d[ind]);
cc6: x[2] <= x[ml-x[m-11;
cc7: forall(indl in indexes, ind2 in indexes,
ind3 in indexes: (indl.i==ind2.i)&&
(ind2.j==ind3.j) &&(indl.j==ind3.j)&&
(ind1.i<ind2.j < indl.j)) d[ind1]==d[ind2]+d[ind3];
cc8: forall(indl,ind2,ind3,ind4 in indexes:
(ind1.i==ind2.i)&&(ind1.j==ind3.j)&&
(ind2.j==ind4.j)&&(ind3.i==ind4.1i)&&(ind1.i<m-1)
&&(3<ind1l. j<m+1)&&(2<ind2. j<m)&&(1<ind3.i<m-1)&&
(ind1.i < ind3.i < ind2.j < indl.j))
d[ind1]==d[ind2]+d[ind3]-d[ind4];
cc9: forall(i in 2..m, j in 2..m, k in 1..m : i < j)
x[1]=x[i-11+k => x[j]1 '= x[j-11+k;
}
- A - - B -

Fig. 1. M.(k) and Pr(k) of Golomb rulers problem in OPL

On Testing Constraint Programs 333

B uses a matrix as data structure (d[indexes]), statically breaks symmetries
(cc8), it contains redundant and surrogate constraints (cc7,cc8, cc9) and global
constraints (al1Different). In this paper, we address the fundamental question
of revealing non-conformities in between the constraint program under test B and
the model-oracle A. Testing B before using it on large instances of the problem
(when m > 15) is highly desirable as computing the global minimum of the
problem for these instances may require computation time greater than a week.
Note that B is syntactically correct and provides correct Golomb rulers for small
values of m. Our testing framework tries to find an instantiation of the variables
that satisfies the constraints of B and violates at least one constraint of A. This
testing process is detailed in section @l With m = 8, our CPTEST framework
computes x = [0 1 3 6 10 26 27 28] in less than 6sec on a standard machine,
indicating that B does not conform A and then contains a fault. Indeed, x is not
a Golomb ruler as 27 — 26 = 1 — 0 = 1. In fact, this non-conformity can easily
be tackled by removing the comment on constraint cc5 in part B. Doing so;
CPTEST provides a conformity certificate saying that the CP program actually
computes the global minimum in 10034.69sec (about 3hours). However, note that
this certificate is only valid for m = 8. Note also that our framework can handle
non-conformities of the Golomb rulers where the global minimum requirement
is relaxed in order to deal with larger instances (when m > 30).

3 Testing Constraint Programs

3.1 Notations

In the rest of the paper, x denotes a vector of variables and (z\z;) stands for
substituting x by the valuation x;.

A constraint program includes a constraint model M, (k),

which is a conjunction of constraints C;(z) over variables = pa-

Model M. (k) rameterized by k, the parameters vector of the model. Note that

Ch(z) x may depend on k. For the Golomb rulers, k is the order of the
ruler while = represents the vector of marks. If £ = 3 then one
Cn(z) seeks for a ruler with 3 marks (e.g., x=[0 1 3]) while if k = 4

Solve() one seeks for a ruler with 4 marks (e.g., x=[0 1 4 6]). Solve()
is a generic procedure representing either the call to a constraint
solver in the case of constraint satisfaction problem or the call to

an optimization procedure. In this latter case, we note f the cost function (for
the sake of clarity, f will be a minimization function but maximization problems
can be tackled as well). We consider that k belongs to K the set of possible
values of the parameters for which M, (k) has at least one solution. sol(M,(k))
denotes the set of solutions of M, (k) and while Projy,(sol(M,(k))) expresses the
projection of sol(M,(k)) on the set y when y C z. In optimization problems, one
usually starts with feasible solutions ranging in a cost interval [I, u]. Therefore,
we introduce the set

Boundsy ..,(Mz(k)) = {z|x € sol(M(k)), f(z) € [[,u]}

334 N. Lazaar, A. Gotlieb, and Y. Lebbah

To clarify these notations, Fig. Pl shows an example of a real objective function
where point z; is a global minimum with a cost f(xz;) = b and points xg, z3
belongs to Boundsy . (My(k)). Note that z1 as well as x2 do not necessarily
belong to Bounds 1. (M (k)).

3.2 Constraint Models and Programs

In our framework, we consider the initial declara-

. . . (x)
tive constraint model to be a testing oracle, called _f _____________ AN
the Model — Oracle , and noted M, (k). M, (k) rep- S [‘IP
resents all the solutions of the problem and strictly |f--4--C-—o - Lo l__]
. . |+ ¥ (R \J } |
conforms the problem specifications. We suppose ! ! b
that, for any parameter instantiation, M, (k) pos- : 1 L1 x
x0 x1 x2 x3

sesses at least one solution. Considering unsatisfi-
able Model-Oracles could be interesting for some
applications (such as software verification [4]) but
we excluded these cases in order to avoid considering equivalence of unsatisfi-
able models. The Constraint Program Under Test (CPUT) is a constraint model
P, (k) (possibly unsatisfiable) which has to be tested for correction against the
Model-Oracle. P, (k) is intended to solve difficult instances of the problem. We
built our framework on the hypothesis that checking whether M4, (ko) is
true where z(is a point of the search space is not hard, while finding such an
x satisfying the constraints may be hard. Given a CPUT P, (k) and its Model-
Oracle M, (k), we suppose that = C z as P, (k) was obtained by refining M, (k).
Hence, the set of variables in z distinct of x are dependant variables that are
automatically instantiated when x is instantiated.

Fig. 2. Objective solutions

3.3 Conformity Relations

The correction of a CPUT w.r.t. a Model-Oracle can be approached through
the usage of conformity relations. These relations aim at assessing the correction
of the CPUT, a notion that can be expressed with various levels of depth. We
propose four set-based definition of conformity divided on two groups: conformity
relations adapted to constraint satisfaction problems and conformity relations
for optimization problems.

Conformity relations for constraint satisfaction problems. The simplest
definition of correction, well-adapted for problems where a single solution is
sought, is given by the following conformity relation:

Definition 1 (confone)

P confk,. M < Proj,(sol(P,(k))) #0 A Proj,(sol(P,(k))) C sol(M(k))

one

P confone M = (Vk € K, P confk M)

Roughly speaking, for a given instance k, confk . asks the solutions of the

CPUT to be included in the solutions of the Model-Oracle. As an example,

On Testing Constraint Programs 335

non-conform

x Fault
o Conformity

non-conform non-conform non-conform

Fig. 3. confone on P, (k) and M, (k)

FigB presents both the sets sol (M, (k)) noted M and sol, (P, (k)) noted P, where
points in red x raise non-conformities (i.e., faults in the CPUT) while points in
green o are conform w.r.t. the Model-Oracle. Parts (a)(b)(c) of Figll exhibit
non-conformities as solving P, (k) can lead to solutions which do not satisfy
M, (k). Part (d) does not exhibit any non-conformity but, as P does not contain
any solution, it does not conform the Model-Oracle for con f,,.. This example
also shows that unsatisfiable models must be considered as non-conform w.r.t.
Model-Oracles, in order to tackle faulty unsatisfiable CPUTs. On the contrary,
part (e) of Figll shows that P.(k) conforms M, (k) for confone, as P cannot
contain any non-conformity points.

Whenever all the solutions are sought, another definition of conformity is
useful:

Definition 2 (confuy)

P confk, M & Proj,(sol(P,(k))) = sol(M(k)) (#0)
P confar M & (Vk € K, P confk, M)

Roughly speaking, conf,;; asks for both set of solutions to be the same. Satis-
fying this conformity relation is very demanding and not always pertinent. For
instance, the CPUT in part B of Fig[Ilincludes constraints that break symmetries
of the problem (e.g., cc6), which yields to lose solutions from the Model-Oracle.
As a result, those two models cannot be conform w.r.t. confy;.

In Fig. @ parts (a)(b)(c) and (d) exhibit non-conformities. Part (d) shows
a solution of the Model-Oracle which is not solution of the CPUT ; therefore,
the CPUT is a faulty over-constrained model. Part (¢) exhibits the opposite
case where the CPUT is a faulty under-constrained model. Proving that P, (k)
conforms M, (k) for one of these two conformity relations is highly desirable.
Unfortunately, such a proof would require not only to find all the solutions of
the CPUT which is an NP-hard problem for some constraint languages (e.g., the

o KO e @

I
conform |

x Fault
o Conformity

non-conform non-conform non-conform non-conform

Fig. 4. confou on P.(k) and M (k)

336 N. Lazaar, A. Gotlieb, and Y. Lebbah

(c)

no-conform

o Feasible solution

conform ; x Fault

¢
s

Fig. 5. con frounds on P (k) and M (k)

finite domains constraint language), but also to perform this for any value of k.
This seems to be intractable in general (probably undecidable) and then we will
confine ourselves to the search of non-conformities within finite resources.

Conformity relations for optimization problems. Conformity relations
for optimization problems is harder to define, as practicians usually start their
refinement process by the definition of bounds for the optimal case [9] . Note
also that non-conformities may arise in the cost function itself and we wanted
our conformity relations to be able to tackle those cases.

Figll presents the conformity relation where feasible solutions of the CPUT
are sought in [I',«']. Bp denotes the set Boundsy is . (Py(k)), By denotes the
set Boundsy (Mg (k)) while B is the set of global minima of M, (k). Part (a)
exhibits four non-conformities as these points are not feasible solutions of the
Model-Oracle M, (k) in [l,u]. For the same reason, Part (b) exhibits two non-
conformities as two feasible solutions of Bp with cost in [I’,«’] do not belong to
By . Part (c) presents also a non-conformity as Bp does not contain any feasible
point meaning that the minimization problem cannot find a feasible solution with
cost in [I',u']. On the contrary, part (d) shows conformity because solutions of
Bp belong to Bj;. Formaly speaking,

Definition 3 (con fyounds)

P confl ,...c M & Proj,(boundsg v (Py(k))) # 0
A Projy(bounds g i (Py(k))) C bounds g .,(My(k))

Note that the definition of con fpounds does not require that f = f’ and then cases
where the cost function has been refined can also be handled. This conformity
relation is useful for addressing hard optimization problems as it does not require
the computation of global minima. As a result, it can be used to assess the
correction of models on relaxed instances of the global optimization problems.
We will come back on this advantage in the experimental validation section.
However, for some problems, it may be useful to assess not only the correction
but also the fact that the CPUT actually computes optimal solutions. This can
be performed by using the following definition which ensures that the global
optimum belongs to [/, v/].

Definition 4 (confpest)

P conflicounds M7
P conffest M < {boundsy, oo (My(k)) =0,
boundsyr _ oo (P (k) =0

On Testing Constraint Programs 337

4 A CP Testing Framework

Testing a CPUT w.r.t. an model-oracle requires to select test data. In this con-
text, a test datum defines an instance of the CPUT and a point of the search
space.

Definition 5 (Test datum). Given a CPUT P, (k) and a Model-Oracle M, (k),
a test datum is an instantiated pair (ko,zo) of parameters and variables.

Note that evaluating My (z) on the test datum (kg, zo) results true when zg is a
solution of the model and false otherwise. Test execution is realized by evaluating
both P\, (ko) and M\, (ko)m and checks whether the results (either true or
false) are the same. Depending on the selected conformity relation, a test verdict
can be issued. This elementary process can be repeated as long as one wishes,
but it is more interesting to guide the test data generation process by the use
of test purposes. Seeking non-conformities implies finding test data such as the
CPUT is satisfied and the Model-Oracle is violated. This enables to detect faults
in CPUT, and helps the constraint programmer to revisit its refinements. Based
on the selection of a conformity relation, non-conformities can be sought with
the following test purposes:

con fone. Given k, find a solution to P, (k) A —=C; where C; is a constraint of the
Model-Oracle M, (k). The idea here is to isolate a non-conformity by looking
independently at each constraint of the model-oracle. Considering all the
constraints of the model-oracle would also be possible but less efficient to
detect non-conformities as more constraints would be involved. Note that
heuristics can be defined on the order of constraints to consider first. Note
also that proving the unsatisfiability of P,(k) A =C; for all C; € M, (k)
permits to issue a conformity certificate saying that P conf® M.

confqu. Given k, find a solution to (M (k) A—C})V (P, (k) A—C;) where C; (resp.
C!) is a constraint of the Model-Oracle M, (k) (resp. P,(k)). In this case,
proving the unsatisfiability of these constraints permits to issue the confor-
mity certificate P con ff” M, but this is not often desirable as constraint
solving usually requires to issue a single solution instead of all solutions.

con frounds- Given k and [I',v'], find a solution to P, (k) A —=C; A f'(z) € [/, u/] A
f(z) € [, u] where f, f’ are the cost functions of the Model-Oracle M, (k) and
the CPUT P, (k). Proving that these constraints are unsatisfiable permits to
issue a certificate P conff . M.

con frest- Given k, find a solution to (PﬁconffoundsM)\/boundsf,_oo,l (M, (k)) #
0V bounds oo r (P, (k)) # 0. Proving that these constraints are unsatisfi-
able permits to issue a conformity certificate P confr , M.

Interestingly, any solution found by the guidance of one of these test purposes
can be stored for further investigations. Indeed, it can be used to debug the
CPUT by looking at the violated constraint and it can also enrich a test set that
will serve to assess the correction of future versions of the CPUT. In addition,

7 20 is obtained by extending xo with values depending on zo.

338 N. Lazaar, A. Gotlieb, and Y. Lebbah

conformity certificates are essential for those who want to convince third-party
certification authorities that their CP programs can be used in critical systems
[54]. So, the proposed testing framework has a role to play in various phases of
the constraint program development.

We now propose a simple but generic algorithm for searching non-conformities:

Algorithm 1. onenegated(B, {C1,...C,,})

Input : B, {C1,...C,} sets of constraints.
Output: conf when {Ci,...C,,} conform B, —conf(+ non-conformity point) otherwise

ne «— 0

X «— vars(B)

foreach C; € {C4,...,C,} do
V —wars(C;)/X
if V. =0 then nc « Solve(B A =C;)
else nc «— Solve(B A ~Projx (C;))
if nc then return —conf(nc)

end

return conf

where Solve(B) denotes the algorithm to find the first solution of the constraints B, vars(B)

denotes the set of variables in B and Projx (C) denotes the constraint projection on variables X.

Algorithm [I] takes two constraint sets as input and returns either conf when
both sets conform with relation confone or —con f(non-conformity point) where
a non-conformity point has been found. Note that the other conformity re-
lations can easily be implemented using this algorithm just by adjusting the
call parameters. Special care has to be taken when building the negation of a
model. For example, consider a Model-Oracle M with x-y!=x-z; x-y!=y-z;
x-z!=y-z; and a CPUT P with c1: x-y=dl; c2: x-z=d2; c3: y-z=d3; c4:
allDiff(d1,d2,d3) ;. Here, it is trivial to see that P conf,; M but if c1 is
selected for negation, M A —cl has solutions as d1 is out of the scope of M.
In the definitions of the conformity relations, these cases were discarded by the
use of projections on the variables of the model-oracle. As computing general
projections are expensive, improvements and pragmatic solutions are available
in our implementation (see Secl).

Providing that the underlying constraint solver is sound and complete, this
algorithm is sound as it cannot report conf if there exists a non-conformity
point. Indeed, given k, upon completion of the algorithm the unsatisfiability of
P.(k) A =M, (k) is demonstrated showing that both models conform with the
selection conformity relation. It is also complete as it cannot report false non-
conformities.

A keypoint of our approach is that test data can be automatically gener-
ated using the same constraint solver as the one used for solving the CPUT.
Recall that we rely on the solver and we are only interested in detecting non-
conformities in models.

On Testing Constraint Programs 339

5 Experimental Validation

5.1 Implementation

We implemented the testing framework shown above in a tool called CPTEST
for OPL (Optimization Programming Language [10]). We chose OPL because
it is one of the main programming environments for developing constraint pro-
grams and also critical constraint programs [3]. CPTEST is based on ILOG CP
Optimizer 2.1 from ILOG OPL 6.1.1 Development Studio. All our experiments
were performed on Quadcore IntelXeon 3.16Ghz machine with 16GB of RAM
and all the models we used to perform these experiments are available online at
www.irisa.fr /celtique/lazaar /CPTEST.

CPTEST includes a complete OPL parser and a backend process that pro-
duces dedicated OPL programs as output. These OPL programs must be solved
in order to find non-conformities. If a solution is found, then CPTEST stops
and reports the non-conformity to the user. Whenever all these OPL programs
are shown to be inconsistent, then a conformity certificate is issued. The tool is
parameterized by several options, including the chosen conformity relation, the
instance of the problem, etc. CPTEST handles the overall OPL language and can
negate most of the constraints that can be expressed in OPL. However, it cannot
negate all the global constraints available, such as the cumulative or circuit
global constraint. Tab[I] summarizes the syntax of OPL constraints handled by
CPTEST. OPL includes two aggregators, namely forall and or. The universal
qualifier forall is used to declare a collection of closely related constraints and to
build global constraints. Interestingly, the or aggregator can be used to negate
forall, as or implements existential quantification. The OPL If-then-else
statement is less general than it may appear as its condition cannot contain
decision variables. Its negation can be computed by negating the Then-part
and Else-part without any loss of generality, as our goal is only to find non-
conformities instead of computing the negation of a general model. Our CPTEST
tool handles several global constraints over discrete values, namely allDifferent,
allMinDistance, inverse, forbiddenAssignments, allowedAssignments and pack.
These constraints can be represented as an aggregation of constraints and
then computing their negation becomes trivial with the rules presented
above and using the other global constraints. For example, the negation ofC:
allDifferent(all(i in R) x[i]) isor(ordered i,j in R) x[i] = x[j]
as C rewrites to forall(ordered i,j in R) x[i] !'= x[j], and the negation
ofs forbiddenAssignments is simply allowedAssignments.

Table 1. Syntax of OPL expressions handled by CPTEST

Ctrs ::= Ctr | Ctrs

Ctr ::= rel | forall(rel) Ctrs| or(rel) Ctrs| if(rel) Ctrs else Ctrs
| allDifferent(rel) | allMinDistance(rel) | inverse(rel)| forbiddenAssignments(rel)
| allowedAssignments(rel)| pack(rel)

w

340 N. Lazaar, A. Gotlieb, and Y. Lebbah

Table 2. Faulty versions of the Golomb Ruler

constraints of P present in the CPUT
CPUT1|cc1, cc9

CPUT2|cc1, cc2, cc7, cc9

CPUT3|ccl, cc2, cc7, cc8, cc9

CPUT4|cc1, cc2, cc3, cc4, cc6, cc7, cc8, cc9, cclo

We implemented algorithm [lin CPTEST with several improvements. In par-
ticular, by noticing that it is unnecessary to search for non-conformities on
constraints that are included in both the CPUT and the Model-Oracle, we im-
plemented a simple rewriting system to check equality modulo Associativity-
Commutativity (=a¢). The system implements the following rules:

xoy—yox, (xoy)oz—xo(yoz), z4+0— 2,
xxl—ux, z+0—0, rX(yez)— (x xy)e(x X 2),
r<y<y>uzc, ISZJHQZI» zi();):E?

where o € {+,%,A,V}, x € {xA,V} and e € {+,A,V}. In algorithm [I] the
constraint C; is discarded whenever there exists C’i in D such as C! =4¢ (C}).

In addition, practical solutions for the handling of local variables and the
computation of constraint projection exist: (a) Annotating the CPUT with con-
straints that define local variables ; (b) Computing constraint projection with
Fourier’s elimination in the case of linear constraints ; (c¢) Eliminating false
alarms with constraint checking. In CPTEST, we implemented (a) and (c).

The goal of our experimental evaluation was to check that CPTEST is able
to detect faults in OPL programs. We fed CPTEST with faulty models coming
from initial constraint program development. Indeed, we developed optimized
models of two well-known CP problems, namely the Golomb rulers and the car
sequencing problem, and we kept first versions of these models for which faults
were found.

5.2 The Golomb Ruler Problem

The model-oracle of the Golomb rulers is given in part A of Fig[Iwhile part B con-
tains a conform version of an optimized version of the model when the comment
on constraint ccb is removed. Let us call P this version. The four intermediate
versions of the Golomb rulers we kept from our initial program development
contain realistic faults, not invented for the experiment. Tab[2 shows the four
faulty versions expressed with the constraints of P. Note that constraint cc6
breaks symmetries in the problem and then it removes solutions (valid Golomb
rulers) w.r.t. the model-oracle. Constraint cc10 is not documented in P, it corre-
sponds to forall(i in m..3*m) count(all(j in indexes)d[j],i)==1.For
each CPUT, we studied its conformity w.r.t. the model-oracle (part A) using the
four conformity relations. The results we got for an instance parameter m = 8 are
given in Tab[3l For the con fyounds relation, the interval [50, 100] was used to feed
the relation, knowing that the global minimum is x,, = 34 when m = 8. Each

On Testing Constraint Programs

341

Table 3. Non-conformities found by CPTEST in various CPUTs of the Golomb rulers
problem (timeout = 5 400s)

| m=2_8

con fone

con fan

Confba’u.'n ds

Confbest

Non-conf points

[0 7 8 18 24 26 35 44]

[17 18 20 25 34 45 49 55]

[0236 11 58 72 86]

[0136 10 15 24 33]

CPUT1|T(S) 4.20s 21.45s 5.64s 7.31s
Non-conf points [U 4 5 26 28 31 47 63] [17 18 20 25 34 45 49 55] [U 18 39 43 45 46 55 64] [[) 34913 15 24 33]
CPUT2|T(S) 5.62s 40.78s 4.64s 174.43s
Non-conf points || [0 4 526 28 31 47 63] | [0 4 5 26 28 31 47 63] |[[0 18 39 43 45 46 55 64]| [0 3 4 9 13 15 24 33
CPUT3|T(S) 9.53s 45.78s 7.15s 389.04s
Non-conf points [[[0 12 18 20 20 33 34 39]| [1 2 10 22 33 55 57 60] ||[0 21 30 32 42 45 46 50]|[0 6 13 21 22 25 27 32]
CPUT4| T(S) 12.60s 0.15s 9.01s 12.53s
Non-conf points cont [07912 37 54 58 64] conf —

P |T(S) 3 448.46s 0.18s 3 658.13s timeout

time a non-confirmity was found, it was reported with the CPU time required to
find it. Firstly, the four faulty CPUT were reported as being non-conforms and
the time required for finding these non-conformities is acceptable (less than a few
minutes in the worst case). Secondly, this experiment shows that the most prac-
tical conformance relations (i.e., con fone and con frounds) are preferable to the
other ones for efficiency reason. Indeed, for the first three CPUT, these relations
gave results less than 10sec. Note that non-conformities are represented either by
invalid Golomb rulers (e.g., 44—35 = 35—26 = 9 in the CPUT1/con fone case) or
by valid Golomb rulers (e.g., CPUT1/con fq case). In fact, a valid Golomb ruler
r can be produced when the model-oracle is satisfied by r while the CPUT is re-
futed by r. These non-conformities correspond to cases where the CPUT misses
solutions of the problem. Interestingly, P is shown as being non-conform with the
con f oy relation and the non-conformity that is found represent a valid Golomb
ruler (i.e., [0 79 12 37 54 58 64]). In fact, recalling that P includes constraints
that break the symmetries, this result was expected. Finally, note that confor-
mity of P when con f.s: is selected was impossible to assess within the allocated
time (timeout=>5 400s). In fact, computing the global minimum of the Golomb
ruler rapidly becomes hard even for small values of m (e.g., CPUT3/con fyest)-

Our experimental evaluation also had the goal to check that computing non-
conformities with CPTEST was less difficult than computing solutions. For that,
Fig. [6l shows: A) the CPU time required to find a global optimum for instances
of the Golomb rulers (square points) and B) the CPU time required to find non-
conformities with CPTEST with the con fpounds conformity relation (lozenge
points). The search heurisitic used in both cases is the default heuristic of OPL,
i.e. depth-first search with restarts, and branch-and-bound for the global opti-
mization problem. CPTEST can find non-conformities when m < 22 in a rea-
sonable amount of time because the hard global optimization problem has been
relaxed in a simpler satisfaction problem, in order to deal with larger instances.
This is the essence of the con fyoungs conformity relation.

342 N. Lazaar, A. Gotlieb, and Y. Lebbah

—+— seeking non-conformity (conIm . .CPTEST) —m— solve Golomb Rulers (OPL)
u i

nd

3000 "
runtime(s)

2500 ’

2000 / /
1500 / f
1000 / /

500 / /
O*H—F.—F.—P.—P.-J.z‘t‘é‘t\é*\/\ . Rulerorder (m)

3 4 5 [7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 6. Testing time and solving time comparison on the Golomb rulers

5.3 The Car Sequencing Problem

The car sequencing problem (CSeq) illustrates interesting features of CP in-
cluding wide parameter settings, redundant, surrogate and global constraints
addition, and specialized data structures definition. This is a constraint satis-
faction problem that amounts to find an assignment of cars to the slots of a
car-production company, which satisfies capacity constraints.

As a model-oracle of this problem, we took the model given in the OPL book
[10]. In this model, capacity constraints are formalized by using constraints r
outof s, saying that from each sub-sequence of s cars, a unit can produce at
most r cars with a given option. Starting from this model, we built an opti-
mized model by introducing several refinements, including a new data structure
setuplo,s] which takes value 1 if option o is installed on slot s, redundant and
global constraint addition (e.g., pack constraint). When building our improved
model of car sequencing, we recorded four faulty constraint models that are used
for experiments. Here again, the idea was to keep models that represent realis-
tic faults instead of a posteriori injected faults. These four models are available
online on the site mentioned above.

Tabld] gives the results of CPTEST on two instances of the problem: an as-
sembly line of 10 cars, 6 classes and 5 options ; an assembly line with 55 cars, 7
classes and 5 options. Using con fone, CPTEST reports non-conformities for the
three first CPUT in less than 1sec for both instances. CPUT4 has no solution
as the fault introduced on the pack constraint prunes dramatically the search
space. This case is interesting as detecting this fault is really difficult. With the
con fqy; relation, the results are balanced as three instances were not detected as
non-conformant within the allocated time slot. For example, in CPUT2, the ca-
pacity constraint of the first option is violated (1 out of 2). This fault results
from a bad formulation but it is quickly detected with con fon.. When con fqy
is selected, more constraints have to be negated and then our algorithm has to
backtrack a lot, which explains the failure. The non-conformity reached in this
case satisfies the model-oracle and violates CPUT2, so it represents a correct

On Testing Constraint Programs 343

Table 4. Non-conformities found by CPTEST in various CPUTs of the car sequencing
problem (timeout = 5 400s)

Confone Confaul
10 slots 55 slots 10 slots 55 slots
Non-conf points|[4 536465132 pl 4546365132 —
CPUT1 T(s) 0.30s 1.23s 2.49s timeout
Non-conf points|[4 631523546 p2 5435462631 —
CpPUT2 T(s) 0.85s 1.65s 1.20s timeout
Non-conf points|[5236143645 p3 5435462631 —
CPUT3 T(s) 0.24s 0.70s 90.73s timeout
Non-conf points conf conf 1362645345 pd
CPUT4 T(s) 0.96s 1.06s 1.26s 100.22s
Non-conf points conf — 6453452631 —
P T(s) 3.01s timeout 0.17s timeout
Pl =6564524443567633356455227342555413416431533616777263164
P2 =7163461732517354266643653442461375525537631643542465543
P3=4315655124236663252174443335436466417315642576355674375
pAd=1362543526453452635445376413671763146752631764543546253

assembly line that CPUT2 excludes from its solutions. Therefore, we can con-
clude that CPUT2 adds and removes solutions which make it difficult to detect
as non-conform.

6 Conclusion

In this paper, we introduced for the first time a testing framework that is adapted
to standard CP development processes. The framework is built on solid notions
such as conformity relations, oracles and test purposes that are specific to CP. We
also presented CPTEST an implementation of our framework dedicated to the
testing of OPL programs and evaluated it on difficult instances of two well-known
constraint problems, namely the Golomb ruler and car-sequencing problem. Our
experimental evaluation shows that CPTEST can efficiently detect non-trivial
faults in faulty versions of those two problems. A desirable extension of our
framework and tool concerns its application to other more open CP plateforms.
In particular, we would like to apply our conformity relations, oracles and testing
notions to GECODE or CHOCO programs as we could intervene on the core
constraint solver of these systems. Developing notions of test coverage similar of
those that can be found in conventional programming requires instrumenting the
solver, something that was just not possible with the black-box solver of OPL.

Acknowledgment

We are very grateful to Olivier Lhomme who pointed us the problem of out-of-
scope variables. Many thanks also to Michel Rueher, Laurent Granvilliers and
Nicolas Beldiceanu for helpful comments on early presentations.

344 N. Lazaar, A. Gotlieb, and Y. Lebbah
References
1. Collavizza, H., Rueher, M., Van Hentenryck, P.: Cpbpv: A constraint-programming

10.

11.

12.

framework for bounded program verification. In: Stuckey, P.J. (ed.) CP 2008.
LNCS, vol. 5202, pp. 327-341. Springer, Heidelberg (2008)

Deransart, P., Matuszyriski, J. (eds.): DiSCiPl 1999. LNCS, vol. 1870. Springer,
Heidelberg (2000)

Flener, P., Pearson, J., Agren, M.: Garcia-Avello C., M. Celiktin, and S. Dissing.
Air-traffic complexity resolution in multi-sector planning. Journal of Air Transport
Management 13(6), 323-328 (2007)

Gotlieb, A.: Tcas software verification using constraint programming. The Knowl-
edge Engineering Review (2009) (accepted for publication)

. Holland, A., O’Sullivan, B.: Robust solutions for combinatorial auctions. In: ACM

Conference on Electronic Commerce (EC-2005), pp. 183-192 (2005)

Junker, U., Vidal, D.: Air traffic flow management with ilog cp optimizer. In:
International Workshop on Constraint Programming for Air Traffic Control and
Management, 7th EuroControl Innovative Research Workshop and Exhibition, INO
2008 (2008)

Langevine, L., Deransart, P., Ducassé, M., Jahier, E.: Prototyping clp(fd) tracers:
a trace model and an experimental validation environment. In: WLPE (2001)
Rankin, W.T.: Optimal golomb rulers: An exhaustive parallel search implementa-
tion. Master’s thesis, Duke University, Durham (1993)

Sahinidis, N.V., Twarmalani, M.: Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming. Kluwer Academic Publishers,
Dordrecht (2002)

Van Hentenryck, P.: The OPL optimization programming language. MIT Press,
Cambridge (1999)

Weyuker, E.J.: On testing non-testable programs. Computer Journal 25(4), 465
470 (1982)

Zhu, H., Hall, P.A.V., May, J.H.R..: Software unit test coverage and adequacy. ACM
Comput. Surv. 29(4), 366-427 (1997)

	On Testing Constraint Programs
	Introduction
	An Illustrative Example
	Testing Constraint Programs
	Notations
	Constraint Models and Programs
	Conformity Relations
	Conformity relations for constraint satisfaction problems.
	Conformity relations for optimization problems.

	A CP Testing Framework
	Experimental Validation
	Implementation
	The Golomb Ruler Problem
	The Car Sequencing Problem

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

