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Chapitre d'équation 1 Section 1 
Abstract — This paper introduces a new 4 degree-of-freedom 
parallel robot. It presents its architecture inspired by FlexPicker, 
an ABB machine based on the Delta architecture, while 
overcoming its drawbacks. This paper exposes the way to get the 
geometrical models, and particularly the forward position 
relationship which can be obtained in a closed form. In a third 
part, a detailed study of the robot singularities is made by taking 
into account the not-so-classic internal singularities. Design 
conditions are obtained for isostatic and over-constrained cases. 
The robot optimization and its workspace are finally presented. 

Keywords — Scara motions; PKM; Pick-and-place. 

INTRODUCTION 

The idea of parallel mechanisms resorting to a non-rigid 
moving platform which includes passive joints and dedicated 
to Scara motions has been introduced recently and a few 
academic prototypes have already demonstrated the 
effectiveness of this principle [3] [7].  Indeed, the 4 dof 
(degrees of freedom) of Scara motions are well adapted to 
pick-and-place tasks: 3 translations to carry an object from one 
point to another, plus one rotation about a given axis in world 
coordinates for the orientation. Robots inspired from Delta [1] 
architecture encountered a real commercial success achieving 
this task, because of their high dynamics. This is due to the 
lightweight (actuators are fixed on the base) parallel (having 
closed kinematics chains) design. However, the RUPUR 
kinematic chain (R: Revolute, U: Universal, P:Prismatic, bold 
letter stands for actuated joint)) that transmits the rotational 
motion from a revolute actuator fixed on the frame to the 
effector (see Figure 1) may become a weak point. This is 
particularly true for Delta with huge workspace or, even more, 
with linear Delta. 

Most of recent researches in that field have proposed 
different designs for obtaining Scara motions; some of them 
are parallel mechanisms, like Kanuk [2] or H4 [3], some 
others have non-fully-parallel designs [4]. Other four-dof 
parallel mechanisms have been studied in the past, but they are 
dedicated to different applications such as Koevermans’ flight 
simulator [5] and Reboulet’s four-dof wrist [6]. Even more 
recently, a machine with a moving platform including passive 
prismatic joints and a “Translation-to-Rotation” 
transformation system has been introduced [7]; in the later 
paper it was shown that for a very specific design ((i) four 
linear motors in the same plane and aligned on the same 

direction, (ii) a three-part moving platform) it was possible to 
get a realistic practical design and very simple kinematics 
model in closed form for both Inverse and Forward problems. 

The aim of this paper is to go one step further and to show 
that is indeed possible to obtain a design which compares 
directly with commercially available Delta-based robots (e.g. 
the FlexPicker, an ABB Robotics equipment) in terms of 
technology, workspace, performance while avoiding the 
RUPUR kinematic chain. 

To do so, we have designed a prototype of a machine we 
called I4R by resorting to several components from 
FlexPicker. In this paper, this prototype is described and the 
way to achieve the desired rotation is discussed. Then, 
geometrical models are derived. A nice feature for this robot is 
that the forward geometrical model can be written in a closed 
form. Afterward, a kinematic modeling able to witness to all 
the singularities of the robot is established: this is based on a 
detailed modeling of the so-called “spatial parallelograms” 
which are described here for what they really are (two SS 
chains). It shows up the geometrical condition that must be 
validated in order to get the desired motions. Two different 
modeling are given: one is isostatic and the other over-
constrained. At the end, the optimization of the machine is 
explained and the workspace is presented. 

 

 

RUPUR Chain 

Figure 1. ABB Robotics FlexPicker 



II. 

III. 

DESCRIPTION OF THE PROTOTYPE 

The practical design is extremely simple thanks to the 
forearms and spatial parallelograms taken from the FlexPicker 
(see Figure 2, left hand side). 

The main difference with the FlexPicker results in the use 
of 4 parallelograms instead of 3. Furthermore, instead of being 
rigid, the moving platform is articulated and does not require 
the kinematic chain transmitting the rotational motion to the 
effector. It is composed of two different parts (while the 
machine in [7] utilizes a three-part moving platform) linked 
together by a primatic guide, plus a pulley-cable system which 
transforms the relative translation of both parts into the desired 
rotation (see Figure 2, right hand side). 

It gives a workspace similar to FlexPicker’s one – a 1-meter 
radius, 0.2-meter high cylinder – but overcomes the problems 
due to the effector’s rotation. The brushless revolute actuators 
are associated to gear units with very low backlash (<1’). 
Moving parts are intended to be as light as possible: forearms 
and parallelograms are carbon fiber parts (from ABB 
Robotics), while the traveling plate is made of aluminum. The 
expected performances for this robot are: 100 [m/s2] 
acceleration and 10 [m/s] velocity (Note: It is too early to 
guarantee that such performances will be reached, even 
though our first tests are encouraging). 

 
Figure 2. Pictures of the first I4R prototype 

MODELING 

In Figure 3, a joint-and-loop graph is depicted: gray boxes 
represent actuated joints, white boxes passive joints. 
Underlined letter stands for a joint equipped with sensors. 
Circles express a coupling between two joints. It is worth 
noting that this mechanism is, on one hand under-constrained 
(as for many Delta-like designs, each rod between two S joints 
can rotate about its own axis) and on the other hand, over-
constrained (a Grübler analysis would show one degree of 
constraint: this will be further analyzed in section IV). Figure 
4 depicts the whole geometry of the mechanism. 
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Figure 3. I4R’s joint-and-loop graph 

*  [ Tx y z ]θ=x  is the generalized operational vector. 
*  [ ]iq=q  is the generalized joint vector.  are the joint 

coordinates (angles measured in planes 
iq

(P ,i z ), ie u  starting 
from ze ). 
* Pi

2, i {1, 2,3, 4}∈ , represent the positions of the actuators: 

 , , (1) [ ]1 0 Te d= − −P [2 0 Te d= −P ]

] , , (2) [ ]3 0 Te d= −P [4 0 Te d=P 
revolute

* iu  characterizes the orientation of the forearms: actuator
forearm 

 , i , (3) [cos( ) sin( ) 0 T
i i iα α=u ] {1, 2,3, 4}∈“spatial

Parallelogram” 
where iα  are angles measured about ze relatively to xe . travelling

plate
*  is the geometrical point located in the middle of A  and 

 representing the spherical joints centers: 
Ai

2i

1i

A
Travelling plate

linear
 i i i= +A P L , i  (4) {1, 2,3, 4}∈guideway

with: 

 , (5) [ ]sin( ) cos( ) sin( )sin( ) cos( ) T
i i i i iL q L q L qα α=L i

where:  is the length of the bars. L
*  is the geometrical point situated in the middle of  and 

 representing the center of the spherical joints between the 
forearms and the moving platform: 

Bi

2i

1Bi

B

 1i ik iθ= + +B D v E {1,2,3,4}∈, i , (6) 

with: 1 2k k R= =  and , (7) 3 4 0k k= =

 [ T]x y z=D , (8) 

 , , (9) [ ]1 0 TE D= − −E [2 0 TE D= −E ]

]

                                                          

 , , (10) [ ]3 0 TE D= −E [4 0 TE D=E

 
2 Each geometrical vector u  will be associated to a column vector  
expressed in the canonic base . Moreover, column vector  

will represent geometrical point  in frame 

u
P( , , )

x y z
e e e=

P

B

O,Bℜ = . 

cable

pulley



 1 = xv e  (11) 

( v  characterizes the direction of the guide and  is the 
radius of the pulley: 

1 R
t Rθ= .) 
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Figure 4. Geometrical modeling of the I4R structure 

A. 

1) 

Relation between  and  x q

Inverse position relationship 
As it is usual for most parallel robots, the inverse position 

relationship is easy to derive from the following equality: 

 i l=l ,  (12) {1, 2,3, 4}i∈

where  is the vector joining A  to  ( i ) il i Bi i i= −l A B
For this robot the resolution is derived for rotational motors 

as in [14] and leads to: 
 cos( ) sin( )i i i i iM q N q G+ = , i  (13) {1, 2,3, 4}∈

where: 2 ( )i i iM L= zB P .e , 2 ( )i i iN L= iB P .u , (14) 

 
22 2

i i iG l L= + −B P , i i i i= −B P P B . (15) ( )

( iB  is given by relation (6) when knowing the operational 
coordinate vector. “ . ” represents a dot product). 

 
Making the classical change of variable: 

 , (16) tan( / 2)i it q=

leads to a second degree polynomial equation. Once solved, 
only the root corresponding to the realistic posture is kept, and 
the joint coordinates can be written as follow: 

 { }
2

1 4
2 tan , 1, 2,3, 4

2
i i i i

i
i

b b a c
q i

a
− − + −

= ∈ 
 
 

 
 (17) 

with ,  and c  the polynomial coefficients: ia ib i

 i ia G Mi= + , b 2i iN= −  and i . (18) i ic G M= −

2) Forward position relationship 
In a general manner, it is always preferable to have the 

forward position relationship written in a closed form. Such a 
model can be derived for the I4R robot. The main reason is 
that operational parameters can be decoupled:  and  
parameters can be derived independently of 

y z
x  and θ . 

Furthermore,  and  can be computed as the intersection of 
two ellipses. 

y z

a) Decoupling operational  variables 
In fact, developing relations (12) about the operational 

parameters leads to the following 4-equation system: 
2 2 2( ) 2 ( ) 2 2i i i i i ix k a x k y b y z c z dθ θ 0+ + + + + + + + = ,  (19) 

where: i i ia = xA E .e , bi i i= yA E .e , c ,  (20) i i i= zA E .e

 2 2
i i id li= −A E , , i . (21) i i i i= −A E E A {1, 2,3, 4}∈

(  is given by relation (4) and (5) while knowing the joint 
parameters). 

iA

By subtracting the two first equations of this system and the 
two last, the following equalities are derived: 
 

2 1 2 1 2 1

1 2 1 2 1 2

( ) ( ) (
( ) ( ) ( )
b b c c d d

x R y z
a a a a a a

θ
− −

+ = + +
− − −

)−
 (22)

 4 3 4 3 4 3

3 4 3 4 3 4

( ) ( ) (
( ) ( ) ( )
b b c c d d

x y z
a a a a a a

Rθ
− −

= + +
− −

+
−

)−
 (23)

When merging those results into 1st and 3rd equations of 
system (19), the following system composed of two quadrics 
depending only on  and  is derived: y z

 2 2 0i i i i i iy z y z y zα β χ δ ε φ+ + + + + = , i {1,2}∈  (24) 

where iα , iβ , iχ , iδ , iε  and iφ  depend on the joint 
coordinates: 

2
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−−  (28) 
with ( , , ) {(1,1,2), (2,3,4)}i j k ∈ . 



b) Computing z as the intersection of two ellipses 
Once the operational parameters are decoupled, the focus is 

given to the resolution of parameters  and . They 
correspond to the intersection of two ellipses as it can be 
observed on Figure 5.   

y z
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Figure 5. Intersecting ellipses 

The algebraic solutions of this problem are known [18] and 
consist in resolving the following 4th degree polynomial 
equation in : z
  (29) 4 3 2

4 3 2 1( )P z u z u z u z u z u= + + + + 0

4

4

The above polynomial is obtained with the change of 
variables: 
 , u v , (30) 2

0 2 10 4u v v v= − 1 0 10 2 7 9 3( ) 2v v v v v v= + + −

  (31) 2
2 0 7 9 2 6 8 3 1( ) ( ) 2u v v v v v v v v v= + + − − − A

 , u v , (32) 3 0 6 8 2 5 1( ) 2 2u v v v v v v v= − + − 3
2

4 0 5 1v v= −

with: 0 1 2 2v 1α χ α χ= − , 1 1 2 2v 1α β α β= − , (33) 

 2 1 2 2v 1α δ α δ= − , 3 1 2 2v 1α ε α ε= − , 4 1 2 2v 1α φ α φ= − , (34) 

 5 1 2 2v 1χ β χ β= − , v6 1 2 2 1χ ε χ ε= − , v7 1 2 2 1χ φ χ φ= − , (35) 

 8 1 2 2v 1β δ β δ= − , 9 1 2 2v 1δ ε δ ε= − , 10 1 2 2 1v δ φ δ φ= − . (36) 

The method proposed by Cardan and Ferrari [19] gives the 
real roots of polynomial equation (29) in a closed form: it 
consists in solving in a first step a 3rd degree polynomial 
equation. This method presented numerical instabilities and a 
more robust formulation was chosen [20][21][22]: it consisted 
in finding solutions either real or complex. 

Practically, equation (29) as only two real solutions, that are 
both represented on Figure 5. So, choosing the proper solution 
for  consists in keeping only the lowest real root (decided 
from geometrical considerations). 

z

c) Computing all other operational variables 
Once  is determined, the aim is to compute  by using 

system (24). Whether than preferring one of the two equations, 
it is better to subtract both equations in order to eliminate the 

 term. It leads to the following expression: 

z y

2y

 

2
1 2 2 1 1 2 2 1 1 2 2 1

2 1 1 2 2 1 1 2

( ) ( ) (
( ) ( )

z z
y

z
)α β α β α ε α ε α φ α φ

α χ α χ α δ α δ
− + − + −

=
− + −  (37) 

At last, the determination of x  is obtained with (23), and θ  
is calculated by solving system (22) : 

 

2 1 2 1 2 1

1 2 1 2 1 2

( ) ( ) ( )
( ) ( ) ( )
b b c c d d

y z x
a a a a a a

θ
 − − −

= + + − − − − 
R

IV. 

 (38) 

SINGULARITY ANALYSIS 

Singularities analysis is often based on analysis of the 
standard Jacobean matrices xJ  and qJ  representing the input-
output velocity relationship: 
 =q xJ q J x

. 

, (39) 

where  and  are respectively the joint velocity vector and 
the operational velocity vector. 

q x

But other kind of singularities can occur [8]. To enlighten 
them, a deeper analysis is required. At first, we will recall the 
fact that “spatial parallelograms” can be seen in two different 
ways, and that we consider here the realistic case where 
spherical joints are modeled as 3-dof joints and not 2-dof 
joints. Then, two types of modeling will be given: one 
suggesting that the linear guide is a cylindrical joint (isostatic 
modeling), and another assuming that it is a prismatic joint 
(over-constrained modeling). In both case, geometrical 
constraints, which must be fulfilled to get rid of internal 
singularities, will be derived. 

Preliminary remark 
According to Hervé’s notations [23] for displacements 

subgroups, { }T  stands for the subgroup of spatial translations 

and { }( )X u  stands for the subgroup of Schoenflies 
displacements (or Scara motion), where  is a unitary vector 
collinear to the rotation’s axis. If a closed loop mechanism is 
composed of two chains producing Schoenflies displacements 
with

u

≠v u , then: 
 { } { } { }( ) ( )X X T=u v∩  (1)
that is to say that such a mechanism will produce only three 
translations. The case of machines with RR(RR)2R chains 
(Figure 6-a) is easily handled with such a technique since 
those chains correspond to Schoenflies subgroup. 
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Figure 6. Two ways to model  the “spatial parallelograms”. 

The case of machines with 2( )SSR chains (Figure 6-b)  is 

more complex: each chain provides 5 dof, 3T-2R, and does not 
correspond to a group. Indeed it is possible that the union ( ) ∪



of two 3T-2R chains generates a 3T-3R motion. The following 
sub-sections consider precisely this type of 2( )SSR chains. 

B. Isostatic modelling 
Here, the prismatic guide is represented by a cylindrical 

joint offering one degree of freedom in translation and one 
degree of freedom in rotation along the same axis. Such an 
hypothesis offers: (i) a number of internal dof consistent with 
a Grübler analysis (no internal constraint), (ii) a model of 
prismatic joint with very low torsional stiffness. 

 On the one hand, a 4-dof subset made of the actuators can 
be observed. On the other hand, an 8-dof traveling plate can be 
found: 3 for positioning, 3 for orientating, and 2 considering 
inter-part mobilities (the linear guide is represented by a 2-dof 
cylindrical joint). Single bars equipped with spherical joints 
separate both subsets. Each implies that the distance between 
their extremities is invariant: 

 ij l=l , i , , (40) {1, 2,3, 4}∈ {1,2}j∈

where  is the vector joining A  to  ( ). ijl ij Bij ij ij ij= −l A B
Deriving this relation leads to the equiprojectivity of 

velocities of the extremities of each rod: 
 , i , , (41) A Bij ijij ij=v .l v .l {1, 2,3, 4}∈ {1,2}j∈

where  (respectively ) represents the velocity of point 

 ( ) relatively to the ground. 
Aij

v

Bij

Bij
v

Aij

As a consequence, a linear system representing the whole 
kinematic of the mechanism can be derived when writing the 
equiprojectivity relations for the 8 rods: 
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(  is the vector joining D  to ,  the one linking  to 
,  is the vector linking  to : .) 

ie
Bi

Bi id

2i

C

if 1Bi B 2 1i i= −f e e





Where 
“×” represents the cross product 

ir
Ai

 is a vector tangent to the trajectory of points A ,  and 
 . It verifies 

i 1Ai

2 i L=r  

ije  is the vector joining  to  D Bij

ijd  the vector joining the end point  to  C Bij

xω , yω  and zω  are angular velocities of half moving 
platform {3-4} (upper part in Figure 4) relatively to the 
ground 
ε  the angular velocity of half  traveling plate {1-2} (lower 
part) relatively to traveling plate’s part about v . 3-4 1

 
Next step of the method consists in doing elementary 

operations on this system (which do not affect the rank of the 
system) to end up with the following system: 

  (43) 

    
=     

   

x
q x int

intint

xJ J J
q

vJ0 0 

where intJ  and x
intJ  are 4 4×  matrices and  is a velocity 

vector. This system has the particularity of being triangular by 
blocs. In this particular case, multiplying both parts of the 
system with the following invertible matrix: 

intv

1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 
 
 
 
 
 =  −
 

− 
 − 
 − 

M

 
( det( ) 1=M ) (44) 

and taking into account the fact that rods i  and  are 
parallel,  in working situation, leads to such a system. The 
results are: 

1 2i
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f l v f .l
J

f l

f l

, (46)

and: 
T

x y zω ω ω ε =  intv  (47) 

i

intJ  will witness of – what we call – “internal 
singularities”. In fact, if intJ  is not singular, (43) implies that: 

  (48) =intv 0

which means that half-travelling plate {3-4} keeps always the 
same orientation ( 0x y zω ω ω= = = ) and it is the same for part 
{1-2} while 0ε = . 

Furthermore, relation: 

 = + x
q x int intJ q J x J v . (49) 

derived from (43) falls into the usual velocity relationship (39). 
Verifying intJ  is not singular can be done by computing its 

determinant.  



It leads to the particular following relationship: 

  (50) ( ) ( )( )1 1 2 2 3 3 4 4( ) ( ) ( ) ( )× × × × × × × ≠xf l f l f l f l .e 0

By verifying that this relation is always true in the whole 
workspace we can guarantee that no “internal” singularity 
occurs. For other type of singularities, usual Jacobean matrices 
need to be studied: qJ  will enlighten “under-mobilities” and 

xJ , “over-mobilities” [14]. 

C. Over-constrained modelling 
This modeling considers the linear guide as a pure, one-dof, 

prismatic joint. It implies that the traveling plate is a subset 
with only 7 dof, and system (42) must be rewritten without 
considering terms associated to ε . As a consequence, intJ  
and x

intJ  are 4  matrixes: 3×

 , . (51) 
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D E

The fact that system (42) gets over-determined (more 
equations than unknowns) reveals the over-constraint of the 
mechanism. To make sure the mechanism doesn’t show 
“internal” singularities, we must guarantee that intJ  is always 
of full rank ( ). Considering the symmetrical role 
of the 4 spatial parallelograms, we obtain the mathematical 
relation revealing “internal” singularities by developing 
arbitrary one of the four  determinant of this matrix: 

rank( ) 3=intJ

3×3 ijkD

  (52) 
[ ]

det [ ]
[ ]

T
i

T
ijk

T

D
  ×
 = × 
  ×  

i

j j

k k

f l
f l
f l




  
( )( ) ( )( )( ) ( ) ( ) ( )ijk i j i j k k i j i j k kD = × × − × ×l l . f f f .l f f .l l l . f  (53)

for ( . , , ) {(1,2,3), (1, 2,4), (1,3, 4), (2,3,4)}i j k ∈

V. OPTIMIZATION AND WORKSPACE 

The parameters chosen for the prototype are: 
 1 225α = °      2 315α = °      3 135α = °      4 45α = °  (54) 

         (55) D E= d e=
which give the machine a symmetrical aspect. 
Length of forearms and single rods measured on the parts 
taken from the FlexPicker robot are: 
        (56) 800 mml = 351 mmL =

The goal of the optimization is to determinate the geometrical 
parameters of the robot.   and  were chosen as little as 
possible in order to obtain a compact travelling plate, and 
parameters  and e  were optimized in order to minimize the 
following function: 

D E

d

  (57) ((max cond mJ W

inside the cylindrical workspace, such as: 

 2 2 0,5 mx y+ ≤  (58) 

 0 0[ 0,1 m , 0,1 mz z z ]∈ − +   (59) 

 [ 180 , 180 ]θ ∈ − ° + °  (60) 

W represents the weight matrix defined by: 

 

1 0 0 0
0 1 0 0
0 0 1 0

10 0 0
R

 
 
 

=  
 
 
  

W

 (61) 
and  the average altitude of the workspace (its value is 
calculated by optimization). The method used for this 
optimization is to calculate the function (57) for a set of 
geometrical configurations. The one which minimized the best 
(57) were chosen.  The results are: 

0z

142mm= = , 300mmd e= =  and  (62) 0 530mmz = −
 
The workspace obtained for a weighted conditioning lower 
then 8 is given in Figure 7. 
The pulley radius R has been chosen in order to obtain a 
complete revolution of the actuator for a 120 mm stroke of the 
prismatic joint. Thus:  
 21 mmR =  (63) 
 

 
Figure 7. Workspace estimation cond( ) 8m <J W  

 
 
 
 
 

))



VI. 

VII. 

CONCLUSION 

This paper has introduced a new parallel mechanism 
inspired by the Delta architecture, while overcoming its 
drawbacks due to the kinematic chain that transmits the 
rotational motion. Indeed, the I4R uses 4 parallelograms and 
its articulated traveling plate allows the orientation of the 
effector. This new robot has been studied in details. 

 The calculation of geometrical models which are both 
obtained in a close way. Moreover, the study of singularities, 
using kinematic model, establishes geometrical conditions for 
an isostatic modeling and an over-constrained one. At least, 
the architecture has been optimized and the workspace taking 
into account the conditioning has been drawn. 

The control of this robot is, to date, very simple (linear 
independent joint control) and will be improved in the future 
by using, for example, a dynamic control.  
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