On the complexity of computing the *k*-restricted edge-connectivity of a graph

Luis P. Montejano¹ Ignasi Sau²

Séminaire AIGCo Montpellier, 11 juin 2015

¹ Département de Mathématiques, Université de Montpellier 2, France
 ² CNRS, LIRMM, Montpellier, France

1/30

Ideas of some of the proofs

< □ > < @ > < 글 > < 글 > < 글 > 2/30

1 Introduction

2 Our results

Ideas of some of the proofs

Further research

- We consider undirected simple graphs without loops or multiple edges.
- A set $S \subseteq E(G)$ of a graph G is an edge-cut if G S is disconnected.
- The edge-connectivity $\lambda(G)$ is defined as

 $\lambda(G) = \min\{|S| : S \subseteq E(G) \text{ is an edge-cut}\}.$

• $\lambda(G)$ can be computed in poly time by a MAX FLOW algorithm.

• Clearly, $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.

- Clearly, $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.
- A graph G is maximally edge-connected if $\lambda(G) = \delta(G)$.

- Clearly, $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.
- A graph G is maximally edge-connected if $\lambda(G) = \delta(G)$.

• A graph *G* is superconnected if every minimum edge-cut consists of the edges adjacent to one vertex.

- Clearly, $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.
- A graph G is maximally edge-connected if $\lambda(G) = \delta(G)$.

G is superconnected while H is not.

• A graph *G* is superconnected if every minimum edge-cut consists of the edges adjacent to one vertex.

Definition [Esfahanian and Hakimi '88]

An edge-cut S is a restricted edge-cut if every component of G - S has at least 2 vertices.

The restricted edge-connectivity $\lambda_2(G)$ of a graph G is defined as

 $\lambda_2(G) = \min\{|S| : S \subseteq E(G) \text{ is a restricted edge-cut}\}.$

 λ_2 is not defined for this graph.

 λ_2 is not defined for this graph.

A connected graph G is called λ_2 -connected if $\lambda_2(G)$ exists.

 λ_2 is not defined for this graph.

A connected graph G is called λ_2 -connected if $\lambda_2(G)$ exists.

Theorem [Esfahanian and Hakimi '88]

Every connected graph G that is not a star is λ_2 -connected and satisfies $\lambda_2(G) \leq \xi(G)$.

Where $\xi(G) = \min\{d(u) + d(v) - 2 : uv \in E(G)\} \ge 2\delta(G) - 2$.

In 1994, Fabrega and Fiol proposed the concept of k-restricted edge-connectivity, where k is a positive integer.

Definition [Fabrega and Fiol '94]

An edge cut S is a k-restricted edge cut if every component of G - S has at least k vertices.

The *k*-restricted edge-connectivity $\lambda_k(G)$ of a graph G is defined as

 $\lambda_k(G) = \min\{|S| : S \subseteq E(G) \text{ is a k-restricted edge-cut}\}.$

In 1994, Fabrega and Fiol proposed the concept of k-restricted edge-connectivity, where k is a positive integer.

Definition [Fabrega and Fiol '94]

An edge cut S is a k-restricted edge cut if every component of G - S has at least k vertices.

The k-restricted edge-connectivity $\lambda_k(G)$ of a graph G is defined as

 $\lambda_k(G) = \min\{|S| : S \subseteq E(G) \text{ is a k-restricted edge-cut}\}.$

A connected graph G is called λ_k -connected if $\lambda_k(G)$ exists.

In 1994, Fabrega and Fiol proposed the concept of k-restricted edge-connectivity, where k is a positive integer.

Definition [Fabrega and Fiol '94]

An edge cut S is a k-restricted edge cut if every component of G - S has at least k vertices.

The k-restricted edge-connectivity $\lambda_k(G)$ of a graph G is defined as

 $\lambda_k(G) = \min\{|S| : S \subseteq E(G) \text{ is a k-restricted edge-cut}\}.$

A connected graph G is called λ_k -connected if $\lambda_k(G)$ exists.

For any *k*-restricted cut *S* of size $\lambda_k(G)$, the graph G - S has exactly two connected components.

A *k*-flower is a graph containing a cut vertex u such that every component of G - u has at most k - 1 vertices.

 λ_k is not defined for *k*-flowers.

A k-flower is a graph containing a cut vertex u such that every component of G - u has at most k - 1 vertices.

 λ_k is not defined for *k*-flowers.

Theorem [Zhang and Yuan '05]

Every connected graph G that is not a k-flower with $k-1 \le \delta(G)$ is λ_k -connected and satisfies $\lambda_k(G) \le \xi_k(G)$, where $\xi_k(G) = \min\{|\partial(X)| : |V(X)| = k \text{ and } G[X] \text{ is connected } \}.$

For a set $X \subseteq V(G)$, we denote by $\partial(X)$ the set of edges leaving X. Then, $\xi_1(G) = \delta(G)$ and $\xi_2(G) = \xi(G)$.

A lot of combinatorial results about λ_k

• Introduction of λ_2 : [Esfahanian, Hakimi '88] • Introduction of λ_k : [Fabrega and Fiol '94] • Case *k* = 3: [Bonsma, Ueffing, Volkmann. '02] • General bounds on λ_k : [Zhang, Yuan '05] • λ_k in graphs of large girth: [Balbuena, Carmona, Fàbrega, Fiol '97] • λ_k in triangle-free graphs: [Yuan, Liu '10] [Holtkamp, Meierling, Montejano '12]

10/30

Meanwhile, in the parameterized complexity community...

Chitnis, Cygan, Hajiaghayi, and Pilipczuk² defined in 2012 this notion:

• Let G be a connected graph. A partition (V_1, V_2) of V(G) is a (k, ℓ) -separation if $|V_1|, |V_2| > k$, $|\partial(V_1)| \leq \ell$, and $G[V_1]$ and $G[V_2]$ are both connected.

Meanwhile, in the parameterized complexity community...

Chitnis, Cygan, Hajiaghayi, and Pilipczuk² defined in 2012 this notion:

• Let G be a connected graph. A partition (V_1, V_2) of V(G) is a (k, ℓ) -separation if $|V_1|, |V_2| > k$, $|\partial(V_1)| \leq \ell$, and $G[V_1]$ and $G[V_2]$ are both connected.

• A graph is (k, ℓ) -connected if it does not have a $(k, \ell - 1)$ -separation.

Meanwhile, in the parameterized complexity community...

Chitnis, Cygan, Hajiaghayi, and Pilipczuk² defined in 2012 this notion:

• Let G be a connected graph. A partition (V_1, V_2) of V(G) is a (k, ℓ) -separation if $|V_1|, |V_2| > k$, $|\partial(V_1)| \leq \ell$, and $G[V_1]$ and $G[V_2]$ are both connected.

- A graph is (k, ℓ) -connected if it does not have a $(k, \ell 1)$ -separation.
- ★ Both notions are essentially the same!

 $\lambda_k(G) \leq \ell$ if and only if G admits a $(k-1, \ell)$ -separation.

(k, ℓ) -separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

- FPT algorithms for cut problems.
- A similar notion existed for vertex-cuts.
- This technique has proved very useful.

[Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12]

[Kawarabayashi, Thorup '11]

[Cygan, Lokshtanov, Pilipczuk², Saurabh '14]

[Kim, Oum, Paul, S., Thilikos '15]

(k, ℓ) -separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

- FPT algorithms for cut problems. [Chitnis, Cygan, Haijaghavi, Pilipczuk² '12]
- A similar notion existed for vertex-cuts.
- This technique has proved very useful.

[Kawarabayashi, Thorup '11]

[Cygan, Lokshtanov, Pilipczuk², Saurabh '14]

[Kim, Oum, Paul, S., Thilikos '15]

* Only one known algorithmic result about (k, ℓ) -separations:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12)

There exists an algorithm that given a n-vertex connected graph G and two integers k, ℓ , either finds a (k, ℓ) -separation, or reports that no such separation exists, in time $(k + \ell)^{O(\min\{k,\ell\})} n^3 \log n$.

(k, ℓ) -separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

- FPT algorithms for cut problems. [Chitnis, Cygan, Haijaghavi, Pilipczuk² '12]
- A similar notion existed for vertex-cuts.
- This technique has proved very useful.

[Kawarabayashi, Thorup '11]

[Cygan, Lokshtanov, Pilipczuk², Saurabh '14]

[Kim, Oum, Paul, S., Thilikos '15]

* Only one known algorithmic result about (k, ℓ) -separations:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12)

There exists an algorithm that given a *n*-vertex connected graph G and two integers k, ℓ , either finds a (k, ℓ) -separation, or reports that no such separation exists, in time $(k + \ell)^{O(\min\{k,\ell\})} n^3 \log n$.

* We initiate a systematic study of the complexity of computing the k-restricted edge-connectivity of a graph.

Ideas of some of the proofs

< □ > < @ > < 글 > < 글 > < 글 > 글 < ♡ < ♡ 13/30

Problem	Classical	Parameterized complexity with parameter				
	complexity	$k + \ell$	k	ℓ	$k + \Delta$	$\ell + \Delta$
ls G	NPc, even					
λ_k -conn. ?	if $\Delta \leqslant 5$	*	FPT	*	FPT	*
	NPh, even	FPT		No poly		
$\lambda_k(G) \leqslant \ell$?	if G is	(known)	W[1]-hard	kernels	FPT	?
	λ_k -conn.					

Table: Summary of our results, where Δ denotes the maximum degree of the input graph *G*, and NPc (resp. NPh) stands for NP-complete (resp. NP-hard). The symbol '*' denotes that the problem is not defined for that parameter.

Ideas of some of the proofs

 Idea given an NP-hard problem with input size n, fix one parameter k of the input to see whether the problem gets more "tractable".
 Example: the size of a VERTEX COVER.

• Given a (NP-hard) problem with input of size *n* and a parameter *k*, a fixed-parameter tractable (FPT) algorithm runs in time

 $f(k) \cdot n^{O(1)}$, for some function f.

・ロト ・ 四 ト ・ 三 ト ・ 三 ト

16/30

Examples: *k*-VERTEX COVER, *k*-LONGEST PATH.

Determining whether a graph is λ_k -connected is hard

Given a graph G, if n is even and k = n/2, it is NP-complete to determine whether G contains two vertex-disjoint connected subgraphs of order n/2 each.

Determining whether a graph is λ_k -connected is hard

- Given a graph G, if n is even and k = n/2, it is NP-complete to determine whether G contains two vertex-disjoint connected subgraphs of order n/2 each.
- This implies that the following problem is NP-hard:

RESTRICTED EDGE-CONNECTIVITY (REC) **Instance:** A connected graph G = (V, E) and an integer k. **Output:** $\lambda_k(G)$, or a report that G is not λ_k -connected.

Determining whether a graph is λ_k -connected is hard

- Given a graph G, if n is even and k = n/2, it is NP-complete to determine whether G contains two vertex-disjoint connected subgraphs of order n/2 each.
- This implies that the following problem is NP-hard:

RESTRICTED EDGE-CONNECTIVITY (REC) **Instance:** A connected graph G = (V, E) and an integer k. **Output:** $\lambda_k(G)$, or a report that G is not λ_k -connected.

 Even if the input graph G is guaranteed to be λ_k-connected, computing λ_k(G) remains hard:

Theorem

The REC problem is NP-hard restricted to λ_k -connected graphs.

• Proof for *n* even and k = n/2. Reduction from MINIMUM BISECTION in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]

- Proof for *n* even and k = n/2. Reduction from MINIMUM BISECTION in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G' by adding to G two non-adjacent universal vertices v_1 and v_2 . Note that G' is $\lambda_{n/2}$ -connected.

- Proof for *n* even and k = n/2. Reduction from MINIMUM BISECTION in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G' by adding to G two non-adjacent universal vertices v_1 and v_2 . Note that G' is $\lambda_{n/2}$ -connected.

Claim v_1 and v_2 belong to different parts in any optimal solution in G'.

- Proof for *n* even and k = n/2. Reduction from MINIMUM BISECTION in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G' by adding to G two non-adjacent universal vertices v_1 and v_2 . Note that G' is $\lambda_{n/2}$ -connected.

Claim v_1 and v_2 belong to different parts in any optimal solution in G'.

- Proof for *n* even and k = n/2. Reduction from MINIMUM BISECTION in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G' by adding to G two non-adjacent universal vertices v_1 and v_2 . Note that G' is $\lambda_{n/2}$ -connected.

Claim v_1 and v_2 belong to different parts in any optimal solution in G'.

Proof of the Theorem

- Proof for *n* even and k = n/2. Reduction from MINIMUM BISECTION in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G' by adding to G two non-adjacent universal vertices v_1 and v_2 . Note that G' is $\lambda_{n/2}$ -connected.

Claim v_1 and v_2 belong to different parts in any optimal solution in G'.

• Thus, REC problem in $G' \equiv \text{MINIMUM BISECTION problem in } G$.

A parameterized analysis of the REC problem

Since the REC problem is NP-hard, we parameterize it:

PARAMETERIZED RESTRICTED EDGE-CONNECTIVITY (p -REC)					
Instance: A connected graph G and two integers k and ℓ .					
Question:	$\lambda_k({\sf G})\leqslant \ell$?				
Parameter 1:	The integers k and ℓ .				
Parameter 2:	The integer k.				
Parameter 3:	The integer ℓ .				

A parameterized analysis of the REC problem

Since the REC problem is NP-hard, we parameterize it:

PARAMETERIZED RESTRICTED EDGE-CONNECTIVITY (p -REC)					
Instance: A connected graph G and two integers k and ℓ .					
Question:	$\lambda_k(G) \leqslant \ell$?				
Parameter 1: The integers k and ℓ .					
Parameter 2: The integer k.					
Parameter 3:	The integer ℓ .				

The **p**-REC problem is **FPT** when parameterized by both k and ℓ :

Theorem (Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12)

There exists an algorithm that given a n-vertex connected graph G and two integers k, ℓ , either finds a (k, ℓ) -separation, or reports that no such separation exists, in time $(k + \ell)^{O(\min\{k,\ell\})} n^3 \log n$.

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

It is easy to see that the problem is in XP: solvable in time $n^{O(k)}$.

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

• Reduction from *k*-CLIQUE: the same as the one for CUTTING *k* VERTICES FROM A GRAPH, only the analysis changes. [Downey et al. '03]

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

- Reduction from *k*-CLIQUE: the same as the one for CUTTING *k* VERTICES FROM A GRAPH, only the analysis changes. [Downey *et al.* '03]
- Given $\mathbf{G} \to \mathbf{G}'$:

n representative vertices

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

• Reduction from *k*-CLIQUE: the same as the one for CUTTING *k* VERTICES FROM A GRAPH, only the analysis changes. [Downey *et al.* '03]

• Given $G \rightarrow G'$:

n representative vertices

• Consider $\ell = kn^2 - 2\binom{k}{2}$ and take $k \le n/2$.

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

• Reduction from *k*-CLIQUE: the same as the one for CUTTING *k* VERTICES FROM A GRAPH, only the analysis changes. [Downey *et al.* '03]

• Given $G \rightarrow G'$:

n representative vertices

- Consider $\ell = kn^2 2\binom{k}{2}$ and take $k \le n/2$.
- Claim 1 If $K \subseteq V(G)$ is a k-clique in G, then $|\partial(K)| = \ell$.

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

• Reduction from *k*-CLIQUE: the same as the one for CUTTING *k* VERTICES FROM A GRAPH, only the analysis changes. [Downey *et al.* '03]

• Given $\mathbf{G} \to \mathbf{G'}$:

n representative vertices

- Consider $\ell = kn^2 2\binom{k}{2}$ and take $k \le n/2$.

Given a graph G and a positive integer k, determining whether G is λ_k -connected is NP-hard.

Given a graph G and a positive integer k, determining whether G is λ_k -connected is NP-hard.

Theorem

Given a graph G and two integers k, ℓ such that G is λ_k -connected, determining whether $\lambda_k(G) \leq \ell$ is W[1]-hard when parameterized by k.

Given a graph G and a positive integer k, determining whether G is λ_k -connected is NP-hard.

Theorem

Given a graph G and two integers k, ℓ such that G is λ_k -connected, determining whether $\lambda_k(G) \leq \ell$ is W[1]-hard when parameterized by k.

Theorem

Given a graph G and a positive integer k, determining whether G is λ_k -connected is FPT when parameterized by k.

The proof is based on a simple application of the technique of splitters.

Given a graph G and a positive integer k, determining whether G is λ_k -connected is NP-hard.

Theorem

Given a graph G and two integers k, ℓ such that G is λ_k -connected, determining whether $\lambda_k(G) \leq \ell$ is W[1]-hard when parameterized by k.

Theorem

Given a graph G and a positive integer k, determining whether G is λ_k -connected is FPT when parameterized by k.

The proof is based on a simple application of the technique of splitters.

★ Parameterized complexity of $\lambda_k(G) \leq \ell$? with parameter ℓ ?

- A kernel for a parameterized problem Π is an algorithm that given
 (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.

- A kernel for a parameterized problem Π is an algorithm that given
 (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.
- If $g(k) = k^{O(1)}$: we say that Π admits a polynomial kernel.

- A kernel for a parameterized problem Π is an algorithm that given
 (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.
- If $g(k) = k^{O(1)}$: we say that Π admits a polynomial kernel.
- Folklore result: Π is FPT $\Leftrightarrow \Pi$ admits a kernel

- A kernel for a parameterized problem Π is an algorithm that given
 (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.
- If $g(k) = k^{O(1)}$: we say that Π admits a polynomial kernel.
- Folklore result: Π is FPT $\Leftrightarrow \Pi$ admits a kernel
- Question: which FPT problems admit polynomial kernels?

The **p**-REC problem does not admit polynomial kernels when parameterized by ℓ , unless coNP \subseteq NP/poly.

- A kernel for a parameterized problem Π is an algorithm that given
 (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)|$, where g is some computable function.
- If $g(k) = k^{O(1)}$: we say that Π admits a polynomial kernel.
- Folklore result: Π is FPT $\Leftrightarrow \Pi$ admits a kernel
- Question: which FPT problems admit polynomial kernels?
- It is possible to prove that polynomial kernels are unlikely to exist.

[Bodlaender, Downey, Fellows, Hermelin '08] [Bodlaender, Thomassé, Yeo '09] [Bodlaender, Jansen, Kratsch '11]

- The proof is inspired by the one to prove that the MIN BISECTION does not admit polynomial kernels. [van Bevern et al. '13]
- Main difference: both parts left out by the edge-cut are connected.

- The proof is inspired by the one to prove that the MIN BISECTION does not admit polynomial kernels. [van Bevern et al. '13]
- Main difference: both parts left out by the edge-cut are connected.
- We use the technique of cross-composition

[Bodlaender, Jansen, Kratsch '11]

- The proof is inspired by the one to prove that the MIN BISECTION does not admit polynomial kernels. [van Bevern et al. '13]
- Main difference: both parts left out by the edge-cut are connected.
- We use the technique of cross-composition

[Bodlaender, Jansen, Kratsch '11]

Cross-composition from MAX CUT (which is NP-hard) to EDGE-WEIGHTED **p**-REC parameterized by ℓ is a poly-time algorithm that, given *t* instances $(G_1, p_1), \ldots, (G_t, p_t)$ of MAX CUT, constructs one instance (G^*, k, ℓ) of EDGE-WEIGHTED **p**-REC such that:

(G*, k, ℓ) is YES iff one of the t instances of MAX CUT is YES, and
 ℓ is polynomially bounded as a function of max_{1≤i≤t} |V(G_i)|.

- The proof is inspired by the one to prove that the MIN BISECTION does not admit polynomial kernels. [van Bevern et al. '13]
- Main difference: both parts left out by the edge-cut are connected.
- We use the technique of cross-composition

[Bodlaender, Jansen, Kratsch '11]

Cross-composition from MAX CUT (which is NP-hard) to EDGE-WEIGHTED **p**-REC parameterized by ℓ is a poly-time algorithm that, given *t* instances $(G_1, p_1), \ldots, (G_t, p_t)$ of MAX CUT, constructs one instance (G^*, k, ℓ) of EDGE-WEIGHTED **p**-REC such that:

(G^*, k, ℓ) is YES iff one of the *t* instances of MAX CUT is YES, and *l* is polynomially bounded as a function of $\max_{1 \le i \le t} |V(G_i)|$.

• We may safely assume that t is odd, that for each $1 \le i \le t$ we have $|V(G_i)| =: n$ and $p_i =: p$, and that $1 \le p \le n^2$.

Idea of the proof

Given $(G_1, p), \ldots, (G_t, p)$, we create G^* as follows:

・ロト ・回ト ・モト ・モト

3

24/30

• We define $w_1 := 5n^2$ and $w_2 := 5$.

• And we set $k := |V(G^*)|/2$ and $\ell := w_1 n^2 - w_2 p + 4$.

Idea of the proof

Given $(G_1, p), \ldots, (G_t, p)$, we create G^* as follows:

- We define $w_1 := 5n^2$ and $w_2 := 5$.
- And we set $k := |V(G^*)|/2$ and $\ell := w_1 n^2 w_2 p + 4$.
- k is not polynomially bounded in terms of n, but this is not a problem since the parameter is ℓ, which is bounded by 5n⁴.
- This construction can be performed in polynomial time in $t \cdot n$.

Idea of the proof

Given $(G_1, p), \ldots, (G_t, p)$, we create G^* as follows:

- We define $w_1 := 5n^2$ and $w_2 := 5$.
- And we set $k := |V(G^*)|/2$ and $\ell := w_1 n^2 w_2 p + 4$.
- k is not polynomially bounded in terms of n, but this is not a problem since the parameter is ℓ, which is bounded by 5n⁴.
- This construction can be performed in polynomial time in $t \cdot n$.

Claim (G^*, k, ℓ) is a YES-instance of EDGE-WEIGHTED **p**-REC iff there exists $i \in \{1, ..., t\}$ such that (G_i, p) is a YES-instance of MAX CUT.

Considering the maximum degree as a parameter

Considering the $\Delta(G)$ as an extra parameter turns the problem easier?

Considering the $\Delta(G)$ as an extra parameter turns the problem easier?

Theorem

Determining whether a connected graph G is λ_k -connected is NP-complete when k is part of the input, even if $\Delta(G) \leq 5$.

Considering the $\Delta(G)$ as an extra parameter turns the problem easier?

Theorem

Determining whether a connected graph G is λ_k -connected is NP-complete when k is part of the input, even if $\Delta(G) \leq 5$.

Theorem

The p-REC problem is FPT when parameterized by k and the maximum degree Δ of the input graph.

Algorithm based on a simple exhaustive search + MIN CUT algorithm.

Idea of the NP-completeness reduction

• Reduction from the 3-DIMENSIONAL MATCHING (3DM) problem:

Given a set $W = R \cup B \cup Y$, where R, B, Y are disjoint sets with |R| = |B| = |Y| = m, and a set of triples $T \subseteq R \times B \times Y$, the question is whether there exists a matching $M \subseteq T$ covering W, i.e., |M| = m and each element of $W = R \cup B \cup Y$ occurs in exactly one triple of M.

Idea of the NP-completeness reduction

• Reduction from the 3-DIMENSIONAL MATCHING (3DM) problem:

Given a set $W = R \cup B \cup Y$, where R, B, Y are disjoint sets with |R| = |B| = |Y| = m, and a set of triples $T \subseteq R \times B \times Y$, the question is whether there exists a matching $M \subseteq T$ covering W, i.e., |M| = m and each element of $W = R \cup B \cup Y$ occurs in exactly one triple of M.

• 3DM is NP-complete even if each element of *W* appears in 2 or 3 triples only. [Dyer, Frieze '86]

Idea of the NP-completeness reduction

• Reduction from the 3-DIMENSIONAL MATCHING (3DM) problem:

Given a set $W = R \cup B \cup Y$, where R, B, Y are disjoint sets with |R| = |B| = |Y| = m, and a set of triples $T \subseteq R \times B \times Y$, the question is whether there exists a matching $M \subseteq T$ covering W, i.e., |M| = m and each element of $W = R \cup B \cup Y$ occurs in exactly one triple of M.

- 3DM is NP-complete even if each element of *W* appears in 2 or 3 triples only. [Dyer, Frieze '86]
- Our reduction is an appropriate modification of one given in

Idea of the NP-completeness reduction (2)

Given an instance (W, T) of 3DM, we build a graph G with $\Delta(G) \leq 5$:

Where $n_b = 2m^3$ and $n_a = (3m + |T|)n_b + 5m - |T| - 1$.

Idea of the NP-completeness reduction (2)

Given an instance (W, T) of 3DM, we build a graph G with $\Delta(G) \leq 5$:

Where $n_b = 2m^3$ and $n_a = (3m + |T|)n_b + 5m - |T| - 1$. Claim *G* contains two disjoint connected subgraphs of order $n/2 \Leftrightarrow$ *T* contains a matching covering *W*.

27/30

Introduction

2 Our results

Ideas of some of the proofs

< □ > < @ > < 글 > < 글 > < 글 > 三 · ○ Q (~ 28/30

Problem	Classical	Parameterized complexity with parameter				
	complexity	$k + \ell$	k	l	$k + \Delta$	$\ell + \Delta$
ls G	NPc, even					
λ_k -conn. ?	if $\Delta \leqslant 5$	*	FPT	*	FPT	*
	NPh, even	FPT		No poly		
$\lambda_k(G) \leqslant \ell$?	if G is	(known)	W[1]-hard	kernels	FPT	?
	λ_k -conn.					

Problem	Classical	Parameterized complexity with parameter				
	complexity	$k + \ell$	k	l	$k + \Delta$	$\ell + \Delta$
Is G λ_k -conn. ?	NPc, even		FDT		FDT	
λ_k -conn. (if $\Delta \leqslant 5$	*	FPT	*	FPT	*
$\lambda_k(G) \leqslant \ell$?	NPh, even if <i>G</i> is	FPT (known)	W[1]-hard	No poly kernels	FPT	?
	λ_k -conn.					

• Main open question: is the problem FPT when parameterized by ℓ ?

Problem	Classical	Parameterized complexity with parameter				
	complexity	$k + \ell$	k	l	$k + \Delta$	$\ell + \Delta$
ls G	NPc, even					
λ_k -conn. ?	if $\Delta \leqslant 5$	*	FPT	*	FPT	*
	NPh, even	FPT		No poly		
$\lambda_k(G) \leqslant \ell$?	if G is	(known)	W[1]-hard	kernels	FPT	?
	λ_k -conn.					

Main open question: is the problem FPT when parameterized by *l*?
 For MIN BISECTION, the non-existence of polynomial kernels was known before the problem was recently proved to be FPT. [Cygan et al. '14]

Problem	Classical	Parameterized complexity with parameter				
	complexity	$k + \ell$	k	l	$k + \Delta$	$\ell + \Delta$
Is G λ_k -conn. ?	NPc, even		FDT		FDT	
λ_k -conn. (if $\Delta \leqslant 5$	*	FPT	*	FPT	*
$\lambda_k(G) \leqslant \ell$?	NPh, even if <i>G</i> is	FPT (known)	W[1]-hard	No poly kernels	FPT	?
	λ_k -conn.					

- Main open question: is the problem FPT when parameterized by *l*?
 For MIN BISECTION, the non-existence of polynomial kernels was known before the problem was recently proved to be FPT. [Cygan et al. '14]
- We don't know it even for the combined parameter ℓ + Δ.
 Adding Δ as a parameter may not make things easier, as MIN BISECTION is as hard in 3-regular graphs as in general graphs. [Berman, Karpinski '02]

Problem	Classical	Parameterized complexity with parameter				
	complexity	$k + \ell$	k	ℓ	$k + \Delta$	$\ell + \Delta$
ls G	NPc, even					
λ_k -conn. ?	if $\Delta \leqslant 5$	*	FPT	*	FPT	*
	NPh, even	FPT		No poly		
$\lambda_k(G) \leqslant \ell$?	if G is	(known)	W[1]-hard	kernels	FPT	?
	λ_k -conn.					

 Main open question: is the problem FPT when parameterized by *l*?
 For MIN BISECTION, the non-existence of polynomial kernels was known before the problem was recently proved to be FPT. [Cygan et al. '14]

- We don't know it even for the combined parameter ℓ + Δ.
 Adding Δ as a parameter may not make things easier, as MIN BISECTION is as hard in 3-regular graphs as in general graphs. [Berman, Karpinski '02]
- Polynomial kernels with parameter $k + \ell$?

Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE