On the complexity of computing the k-restricted edge-connectivity of a graph

Luis P. Montejano ${ }^{1} \quad$ Ignasi Sau ${ }^{2}$

Séminaire AIGCo
Montpellier, 11 juin 2015

${ }^{1}$ Département de Mathématiques, Université de Montpellier 2, France ${ }^{2}$ CNRS, LIRMM, Montpellier, France

Outline of the talk

(1) Introduction
(2) Our results
(3) Ideas of some of the proofs
(4) Further research

Next section is...

(1) Introduction

(2) Our results

(3) Ideas of some of the proofs
(4) Further research

Edge-connectivity

- We consider undirected simple graphs without loops or multiple edges.
- A set $S \subseteq E(G)$ of a graph G is an edge-cut if $G-S$ is disconnected.
- The edge-connectivity $\lambda(G)$ is defined as

$$
\lambda(G)=\min \{|S|: S \subseteq E(G) \text { is an edge-cut }\}
$$

- $\lambda(G)$ can be computed in poly time by a Max Flow algorithm.

Edge-connectivity and minimum degree

- Clearly, $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.

Edge-connectivity and minimum degree

- Clearly, $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.
- A graph G is maximally edge-connected if $\lambda(G)=\delta(G)$.

$$
\lambda(G)=\delta(G)=3=\lambda(H)=\delta(H)
$$

Edge-connectivity and minimum degree

- Clearly, $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.
- A graph G is maximally edge-connected if $\lambda(G)=\delta(G)$.

G

H

$$
\lambda(G)=\delta(G)=3=\lambda(H)=\delta(H)
$$

- A graph G is superconnected if every minimum edge-cut consists of the edges adjacent to one vertex.

Edge-connectivity and minimum degree

- Clearly, $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.
- A graph G is maximally edge-connected if $\lambda(G)=\delta(G)$.

G

H
G is superconnected while H is not.

- A graph G is superconnected if every minimum edge-cut consists of the edges adjacent to one vertex.

Restricted edge-connectivity

Definition [Esfahanian and Hakimi '88]

An edge-cut S is a restricted edge-cut if every component of $G-S$ has at least 2 vertices.

The restricted edge-connectivity $\lambda_{2}(G)$ of a graph G is defined as

$$
\lambda_{2}(G)=\min \{|S|: S \subseteq E(G) \text { is a restricted edge-cut }\} .
$$

$$
\lambda_{2}(G)=4 \text { and } \lambda_{2}(H)=3 .
$$

Restricted edge-connectivity

λ_{2} is not defined for this graph.

Restricted edge-connectivity

λ_{2} is not defined for this graph.
A connected graph G is called λ_{2}-connected if $\lambda_{2}(G)$ exists.

Restricted edge-connectivity

λ_{2} is not defined for this graph.
A connected graph G is called λ_{2}-connected if $\lambda_{2}(G)$ exists.

Theorem [Esfahanian and Hakimi '88]

Every connected graph G that is not a star is λ_{2}-connected and satisfies $\lambda_{2}(G) \leq \xi(G)$.

Where $\xi(G)=\min \{d(u)+d(v)-2: u v \in E(G)\} \geq 2 \delta(G)-2$.

k-restricted edge-connectivity

In 1994, Fàbrega and Fiol proposed the concept of k-restricted edge-connectivity, where k is a positive integer.

Definition [Fàbrega and Fiol '94]

An edge cut S is a k-restricted edge cut if every component of $G-S$ has at least k vertices.

The k-restricted edge-connectivity $\lambda_{k}(G)$ of a graph G is defined as

$$
\lambda_{k}(G)=\min \{|S|: S \subseteq E(G) \text { is a k-restricted edge-cut }\} .
$$

k-restricted edge-connectivity

In 1994, Fàbrega and Fiol proposed the concept of k-restricted edge-connectivity, where k is a positive integer.

Definition [Fàbrega and Fiol '94]

An edge cut S is a k-restricted edge cut if every component of $G-S$ has at least k vertices.

The k-restricted edge-connectivity $\lambda_{k}(G)$ of a graph G is defined as

$$
\lambda_{k}(G)=\min \{|S|: S \subseteq E(G) \text { is a k-restricted edge-cut }\} .
$$

A connected graph G is called λ_{k}-connected if $\lambda_{k}(G)$ exists.

k-restricted edge-connectivity

In 1994, Fàbrega and Fiol proposed the concept of k-restricted edge-connectivity, where k is a positive integer.

Definition [Fàbrega and Fiol '94]

An edge cut S is a k-restricted edge cut if every component of $G-S$ has at least k vertices.

The k-restricted edge-connectivity $\lambda_{k}(G)$ of a graph G is defined as

$$
\lambda_{k}(G)=\min \{|S|: S \subseteq E(G) \text { is a k-restricted edge-cut }\} .
$$

A connected graph G is called λ_{k}-connected if $\lambda_{k}(G)$ exists.
For any k-restricted cut S of size $\lambda_{k}(G)$, the graph $G-S$ has exactly two connected components.

k-restricted edge-connectivity

A k-flower is a graph containing a cut vertex u such that every component of $G-u$ has at most $k-1$ vertices.

λ_{k} is not defined for k-flowers.

k-restricted edge-connectivity

A k-flower is a graph containing a cut vertex u such that every component of $G-u$ has at most $k-1$ vertices.

λ_{k} is not defined for k-flowers.

Theorem [Zhang and Yuan '05]

Every connected graph G that is not a k-flower with $k-1 \leq \delta(G)$ is λ_{k}-connected and satisfies $\lambda_{k}(G) \leq \xi_{k}(G)$, where $\xi_{k}(G)=\min \{|\partial(X)|:|V(X)|=k$ and $G[X]$ is connected $\}$.

For a set $X \subseteq V(G)$, we denote by $\partial(X)$ the set of edges leaving X. Then, $\xi_{1}(G)=\delta(G)$ and $\xi_{2}(G)=\xi(G)$.

A lot of combinatorial results about λ_{k}

- Introduction of λ_{2} :
- Introduction of λ_{k} :
[Fàbrega and Fiol '94]
- Case $k=3$:
[Bonsma, Ueffing, Volkmann. '02]
- General bounds on λ_{k} :
[Zhang, Yuan '05]
- λ_{k} in graphs of large girth:
- λ_{k} in triangle-free graphs:

Meanwhile, in the parameterized complexity community...
Chitnis, Cygan, Hajiaghayi, and Pilipczuk ${ }^{2}$ defined in 2012 this notion:

- Let G be a connected graph. A partition $\left(V_{1}, V_{2}\right)$ of $V(G)$ is a (k, ℓ)-separation if $\left|V_{1}\right|,\left|V_{2}\right|>k,\left|\partial\left(V_{1}\right)\right| \leqslant \ell$, and $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are both connected.

Meanwhile, in the parameterized complexity community...

Chitnis, Cygan, Hajiaghayi, and Pilipczuk ${ }^{2}$ defined in 2012 this notion:

- Let G be a connected graph. A partition $\left(V_{1}, V_{2}\right)$ of $V(G)$ is a (k, ℓ)-separation if $\left|V_{1}\right|,\left|V_{2}\right|>k,\left|\partial\left(V_{1}\right)\right| \leqslant \ell$, and $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are both connected.

- A graph is (k, ℓ)-connected if it does not have a $(k, \ell-1)$-separation.

Meanwhile, in the parameterized complexity community...

Chitnis, Cygan, Hajiaghayi, and Pilipczuk ${ }^{2}$ defined in 2012 this notion:

- Let G be a connected graph. A partition $\left(V_{1}, V_{2}\right)$ of $V(G)$ is a (k, ℓ)-separation if $\left|V_{1}\right|,\left|V_{2}\right|>k,\left|\partial\left(V_{1}\right)\right| \leqslant \ell$, and $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are both connected.

- A graph is (k, ℓ)-connected if it does not have a $(k, \ell-1)$-separation.

Both notions are essentially the same!
$\lambda_{k}(G) \leqslant \ell$ if and only if G admits a $(k-1, \ell)$-separation.

(k, ℓ)-separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

- FPT algorithms for cut problems.
- A similar notion existed for vertex-cuts.
- This technique has proved very useful.
[Chitnis, Cygan, Hajiaghayi, Pilipczuk ${ }^{2}$ '12]
[Kawarabayashi, Thorup '11]
[Cygan, Lokshtanov, Pilipczuk ${ }^{2}$, Saurabh '14]
[Kim, Oum, Paul, S., Thilikos '15]

(k, ℓ)-separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

- FPT algorithms for cut problems.
- A similar notion existed for vertex-cuts.
- This technique has proved very useful.
[Chitnis, Cygan, Hajiaghayi, Pilipczuk ${ }^{2}$ '12]
[Kawarabayashi, Thorup '11]
[Cygan, Lokshtanov, Pilipczuk ${ }^{2}$, Saurabh '14]
[Kim, Oum, Paul, S., Thilikos '15]
\star Only one known algorithmic result about (k, ℓ)-separations:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12)

There exists an algorithm that given a n-vertex connected graph G and two integers k, ℓ, either finds a (k, ℓ)-separation, or reports that no such separation exists, in time $(k+\ell)^{O(\min \{k, \ell\})} n^{3} \log n$.

(k, ℓ)-separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

- FPT algorithms for cut problems.
[Chitnis, Cygan, Hajiaghayi, Pilipczuk ${ }^{2}$ '12]
- A similar notion existed for vertex-cuts.
[Kawarabayashi, Thorup '11]
- This technique has proved very useful. [Cygan, Lokshtanov, Pilipczuk², Saurabh '14]
[Kim, Oum, Paul, S., Thilikos '15]
\star Only one known algorithmic result about (k, ℓ)-separations:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk ${ }^{2}$ '12)

There exists an algorithm that given a n-vertex connected graph G and two integers k, ℓ, either finds a (k, ℓ)-separation, or reports that no such separation exists, in time $(k+\ell)^{O(\min \{k, \ell\})} n^{3} \log n$.

* We initiate a systematic study of the complexity of computing the k-restricted edge-connectivity of a graph.

Next section is...

(1) Introduction
(2) Our results

(3) Ideas of some of the proofs

(4) Further research

Summary of our results

Problem	Classical complexity		Parameterized complexity with parameter			
	$k+\ell$	k	ℓ	$k+\Delta$	$\ell+\Delta$	
Is G λ_{k}-conn. ?	NPc, even if $\Delta \leqslant 5$	\star	FPT	\star	FPT	\star
$\lambda_{k}(G) \leqslant \ell ?$	NPh, even if G is λ_{k}-conn.	FPT (known $)$	W[1]-hard	No poly kernels	FPT	$?$

Table: Summary of our results, where Δ denotes the maximum degree of the input graph G, and NPc (resp. NPh) stands for NP-complete (resp. NP-hard). The symbol ' \star ' denotes that the problem is not defined for that parameter.

Next section is...

(1) Introduction

(2) Our results
(3) Ideas of some of the proofs
(4) Further research

Some words on parameterized complexity

- Idea given an NP-hard problem with input size n, fix one parameter k of the input to see whether the problem gets more "tractable".

Example: the size of a Vertex Cover.

- Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in time

$$
f(k) \cdot n^{O(1)}, \text { for some function } f .
$$

Examples: k-Vertex Cover, k-Longest Path.

Determining whether a graph is λ_{k}-connected is hard

- Given a graph G, if n is even and $k=n / 2$, it is NP-complete to determine whether G contains two vertex-disjoint connected subgraphs of order $n / 2$ each.
[Dyer, Frieze '85]

Determining whether a graph is λ_{k}-connected is hard

- Given a graph G, if n is even and $k=n / 2$, it is NP-complete to determine whether G contains two vertex-disjoint connected subgraphs of order $n / 2$ each.
[Dyer, Frieze '85]
- This implies that the following problem is NP-hard:

Restricted Edge-connectivity (REC)
Instance: A connected graph $G=(V, E)$ and an integer k. Output: $\quad \lambda_{k}(G)$, or a report that G is not λ_{k}-connected.

Determining whether a graph is λ_{k}-connected is hard

- Given a graph G, if n is even and $k=n / 2$, it is NP-complete to determine whether G contains two vertex-disjoint connected subgraphs of order $n / 2$ each.
- This implies that the following problem is NP-hard:

Restricted Edge-connectivity (REC)
Instance: A connected graph $G=(V, E)$ and an integer k. Output: $\quad \lambda_{k}(G)$, or a report that G is not λ_{k}-connected.

- Even if the input graph G is guaranteed to be λ_{k}-connected, computing $\lambda_{k}(G)$ remains hard:

Theorem

The REC problem is NP-hard restricted to λ_{k}-connected graphs.

Proof of the Theorem

- Proof for n even and $k=n / 2$. Reduction from Minimum Bisection in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]

Proof of the Theorem

- Proof for n even and $k=n / 2$. Reduction from Minimum Bisection in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G^{\prime} by adding to G two non-adjacent universal vertices v_{1} and v_{2}. Note that G^{\prime} is $\lambda_{n / 2}$-connected.

Proof of the Theorem

- Proof for n even and $k=n / 2$. Reduction from Minimum Bisection in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G^{\prime} by adding to G two non-adjacent universal vertices v_{1} and v_{2}. Note that G^{\prime} is $\lambda_{n / 2}$-connected.
Claim v_{1} and v_{2} belong to different parts in any optimal solution in G^{\prime}.

Proof of the Theorem

- Proof for n even and $k=n / 2$. Reduction from Minimum Bisection in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G^{\prime} by adding to G two non-adjacent universal vertices v_{1} and v_{2}. Note that G^{\prime} is $\lambda_{n / 2}$-connected.
Claim v_{1} and v_{2} belong to different parts in any optimal solution in G^{\prime}.

Proof of the Theorem

- Proof for n even and $k=n / 2$. Reduction from Minimum Bisection in connected 3-regular graphs, which is NP-hard.
[Barman, Karpinski '02]
- Given G, we build G^{\prime} by adding to G two non-adjacent universal vertices v_{1} and v_{2}. Note that G^{\prime} is $\lambda_{n / 2}$-connected.
Claim v_{1} and v_{2} belong to different parts in any optimal solution in G^{\prime}.

connected

connected

Proof of the Theorem

- Proof for n even and $k=n / 2$. Reduction from Minimum Bisection in connected 3-regular graphs, which is NP-hard.
[Berman, Karpinski '02]
- Given G, we build G^{\prime} by adding to G two non-adjacent universal vertices v_{1} and v_{2}. Note that G^{\prime} is $\lambda_{n / 2}$-connected.
Claim v_{1} and v_{2} belong to different parts in any optimal solution in G^{\prime}.

- Thus, REC problem in $G^{\prime} \equiv$ Minimum Bisection problem in G.

A parameterized analysis of the REC problem

Since the REC problem is NP-hard, we parameterize it:
Parameterized Restricted Edge-connectivity (p-REC) Instance: A connected graph G and two integers k and ℓ. Question: $\quad \lambda_{k}(G) \leqslant \ell$?
Parameter 1: The integers k and ℓ.
Parameter 2: The integer k.
Parameter 3: The integer ℓ.

A parameterized analysis of the REC problem

Since the REC problem is NP-hard, we parameterize it:
Parameterized Restricted Edge-connectivity (p-REC)
Instance: A connected graph G and two integers k and ℓ.
Question: $\quad \lambda_{k}(G) \leqslant \ell$?
Parameter 1: The integers k and ℓ.
Parameter 2: The integer k.
Parameter 3: The integer ℓ.

The \mathbf{p}-REC problem is FPT when parameterized by both k and ℓ :

Theorem (Chitnis, Cygan, Hajiaghayi, Pilipczuk ${ }^{2}$ '12)

There exists an algorithm that given a n-vertex connected graph G and two integers k, ℓ, either finds a (k, ℓ)-separation, or reports that no such separation exists, in time $(k+\ell)^{O(\min \{k, \ell\})} n^{3} \log n$.

W[1]-hardness with parameter k only

Theorem

The p-REC problem is W[1]-hard when parameterized by k.
It is easy to see that the problem is in XP: solvable in time $n^{O(k)}$.

W[1]-hardness with parameter k only

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

- Reduction from k-Clique: the same as the one for Cutting k Vertices from a Graph, only the analysis changes. [Downey et al. '03]

W[1]-hardness with parameter k only

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

- Reduction from k-Clique: the same as the one for Cutting k Vertices from a Graph, only the analysis changes. [Downey et al. '03]
- Given $G \rightarrow G^{\prime}$:
$C=K_{n^{3}}$

n representative vertices

W[1]-hardness with parameter k only

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

- Reduction from k-Clique: the same as the one for Cutting k Vertices from a Graph, only the analysis changes. [Downey et al. '03]
- Given $G \rightarrow G^{\prime}$:
$C=K_{n^{3}}$

n representative vertices
- Consider $\ell=k n^{2}-2\binom{k}{2}$ and take $k \leq n / 2$.

W[1]-hardness with parameter k only

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

- Reduction from k-Clique: the same as the one for Cutting k Vertices from a Graph, only the analysis changes. [Downey et al. '03]
- Given $G \rightarrow G^{\prime}$:

$$
C=K_{n^{3}}
$$

n representative vertices

- Consider $\ell=k n^{2}-2\binom{k}{2}$ and take $k \leq n / 2$.
- Claim 1 If $K \subseteq V(G)$ is a k-clique in G, then $|\partial(K)|=\ell$.

W[1]-hardness with parameter k only

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

- Reduction from k-Clique: the same as the one for Cutting k Vertices from a Graph, only the analysis changes. [Downey et al. '03]
- Given $G \rightarrow G^{\prime}$:

$$
C=K_{n^{3}}
$$

n representative vertices

- Consider $\ell=k n^{2}-2\binom{k}{2}$ and take $k \leq n / 2$.
- Claim 1 If $K \subseteq V(G)$ is a k-clique in G, then $|\partial(K)|=\ell$.
- Claim 2 If $K \subseteq V\left(G^{\prime}\right)$ such that $G[K]$ and $G^{\prime}-K$ are connected, $|K| \geq k,\left|V\left(G^{\prime}\right) \backslash K\right| \geq k$, and $|\partial(K)| \leq \ell$, then.

Let's recap...

Theorem

Given a graph G and a positive integer k, determining whether G is λ_{k}-connected is NP-hard.

Let's recap...

Theorem

Given a graph G and a positive integer k, determining whether G is λ_{k}-connected is NP-hard.

Theorem

Given a graph G and two integers k, ℓ such that G is λ_{k}-connected, determining whether $\lambda_{k}(G) \leqslant \ell$ is $\mathrm{W}[1]$-hard when parameterized by k.

Let's recap...

Theorem

Given a graph G and a positive integer k, determining whether G is λ_{k}-connected is NP-hard.

Theorem

Given a graph G and two integers k, ℓ such that G is λ_{k}-connected, determining whether $\lambda_{k}(G) \leqslant \ell$ is W[1]-hard when parameterized by k.

Theorem

Given a graph G and a positive integer k, determining whether G is λ_{k}-connected is FPT when parameterized by k.

The proof is based on a simple application of the technique of splitters.

Let's recap...

Theorem

Given a graph G and a positive integer k, determining whether G is λ_{k}-connected is NP-hard.

Theorem

Given a graph G and two integers k, ℓ such that G is λ_{k}-connected, determining whether $\lambda_{k}(G) \leqslant \ell$ is W[1]-hard when parameterized by k.

Theorem

Given a graph G and a positive integer k, determining whether G is λ_{k}-connected is FPT when parameterized by k.

The proof is based on a simple application of the technique of splitters.
\star Parameterized complexity of $\lambda_{k}(G) \leqslant \ell$? with parameter ℓ ?

Parameterized complexity with parameter ℓ

Theorem

The p-REC problem does not admit polynomial kernels when parameterized by ℓ, unless coNP $\subseteq N P /$ poly.

Parameterized complexity with parameter ℓ

Theorem

The p-REC problem does not admit polynomial kernels when parameterized by ℓ, unless coNP $\subseteq N P /$ poly.

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in $|x|+k$, an instance $\left(x^{\prime}, k^{\prime}\right)$ s.t.:
$\star(x, k) \in \Pi$ if and only if $\left(x^{\prime}, k^{\prime}\right) \in \Pi$, and
\star Both $\left|x^{\prime}\right|, k^{\prime} \leqslant g(k)$, where g is some computable function.

Parameterized complexity with parameter ℓ

Theorem

The p-REC problem does not admit polynomial kernels when parameterized by ℓ, unless coNP $\subseteq N P /$ poly.

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in $|x|+k$, an instance $\left(x^{\prime}, k^{\prime}\right)$ s.t.:
$\star(x, k) \in \Pi$ if and only if $\left(x^{\prime}, k^{\prime}\right) \in \Pi$, and
* Both $\left|x^{\prime}\right|, k^{\prime} \leqslant g(k)$, where g is some computable function.
- If $g(k)=k^{O(1)}$: we say that Π admits a polynomial kernel.

Parameterized complexity with parameter ℓ

Theorem

The p-REC problem does not admit polynomial kernels when parameterized by ℓ, unless coNP $\subseteq N P /$ poly.

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in $|x|+k$, an instance $\left(x^{\prime}, k^{\prime}\right)$ s.t.:
$\star(x, k) \in \Pi$ if and only if $\left(x^{\prime}, k^{\prime}\right) \in \Pi$, and
* Both $\left|x^{\prime}\right|, k^{\prime} \leqslant g(k)$, where g is some computable function.
- If $g(k)=k^{O(1)}$: we say that Π admits a polynomial kernel.
- Folklore result: Π is FPT $\Leftrightarrow \Pi$ admits a kernel

Parameterized complexity with parameter ℓ

Theorem

The p-REC problem does not admit polynomial kernels when parameterized by ℓ, unless coNP $\subseteq N P /$ poly.

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in $|x|+k$, an instance $\left(x^{\prime}, k^{\prime}\right)$ s.t.:
$\star(x, k) \in \Pi$ if and only if $\left(x^{\prime}, k^{\prime}\right) \in \Pi$, and
\star Both $\left|x^{\prime}\right|, k^{\prime} \leqslant g(k)$, where g is some computable function.
- If $g(k)=k^{O(1)}$: we say that Π admits a polynomial kernel.
- Folklore result: Π is FPT $\Leftrightarrow \Pi$ admits a kernel
- Question: which FPT problems admit polynomial kernels?

Parameterized complexity with parameter ℓ

Theorem

The p-REC problem does not admit polynomial kernels when parameterized by ℓ, unless coNP $\subseteq N P /$ poly.

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in $|x|+k$, an instance $\left(x^{\prime}, k^{\prime}\right)$ s.t.:
$\star(x, k) \in \Pi$ if and only if $\left(x^{\prime}, k^{\prime}\right) \in \Pi$, and
\star Both $\left|x^{\prime}\right|, k^{\prime} \leqslant g(k)$, where g is some computable function.
- If $g(k)=k^{O(1)}$: we say that Π admits a polynomial kernel.
- Folklore result: Π is FPT $\Leftrightarrow \Pi$ admits a kernel
- Question: which FPT problems admit polynomial kernels?
- It is possible to prove that polynomial kernels are unlikely to exist.

Non-existence of polynomial kernels with parameter ℓ

- The proof is inspired by the one to prove that the Min Bisection does not admit polynomial kernels.
[van Bevern et al. '13]
- Main difference: both parts left out by the edge-cut are connected.

Non-existence of polynomial kernels with parameter ℓ

- The proof is inspired by the one to prove that the Min Bisection does not admit polynomial kernels.
[van Bevern et al. '13]
- Main difference: both parts left out by the edge-cut are connected.
- We use the technique of cross-composition

Non-existence of polynomial kernels with parameter ℓ

- The proof is inspired by the one to prove that the Min Bisection does not admit polynomial kernels.
- Main difference: both parts left out by the edge-cut are connected.
- We use the technique of cross-composition

Cross-composition from Max Cut (which is NP-hard) to Edge-Weighted p-REC parameterized by ℓ is a poly-time algorithm that, given t instances $\left(G_{1}, p_{1}\right), \ldots,\left(G_{t}, p_{t}\right)$ of Max Cut, constructs one instance $\left(G^{*}, k, \ell\right)$ of Edge-Weighted p-REC such that:
(1) $\left(G^{*}, k, \ell\right)$ is Yes iff one of the t instances of Max Cut is Yes, and
(2) ℓ is polynomially bounded as a function of $\max _{1 \leqslant i \leqslant t}\left|V\left(G_{i}\right)\right|$.

Non-existence of polynomial kernels with parameter ℓ

- The proof is inspired by the one to prove that the Min Bisection does not admit polynomial kernels.
- Main difference: both parts left out by the edge-cut are connected.
- We use the technique of cross-composition

Cross-composition from Max Cut (which is NP-hard) to Edge-Weighted p-REC parameterized by ℓ is a poly-time algorithm that, given t instances $\left(G_{1}, p_{1}\right), \ldots,\left(G_{t}, p_{t}\right)$ of Max Cut, constructs one instance $\left(G^{*}, k, \ell\right)$ of Edge-Weighted p-REC such that:
(1) $\left(G^{*}, k, \ell\right)$ is Yes iff one of the t instances of Max Cut is Yes, and
(2) ℓ is polynomially bounded as a function of $\max _{1 \leqslant i \leqslant t}\left|V\left(G_{i}\right)\right|$.

- We may safely assume that t is odd, that for each $1 \leqslant i \leqslant t$ we have $\left|V\left(G_{i}\right)\right|=: n$ and $p_{i}=: p$, and that $1 \leqslant p \leqslant n^{2}$.

Idea of the proof

Given $\left(G_{1}, p\right), \ldots,\left(G_{t}, p\right)$, we create G^{*} as follows:

- We define $w_{1}:=5 n^{2}$ and $w_{2}:=5$.
- And we set $k:=\left|V\left(G^{*}\right)\right| / 2$ and $\ell:=w_{1} n^{2}-w_{2} p+4$.

Idea of the proof

Given $\left(G_{1}, p\right), \ldots,\left(G_{t}, p\right)$, we create G^{*} as follows:

- We define $w_{1}:=5 n^{2}$ and $w_{2}:=5$.
- And we set $k:=\left|V\left(G^{*}\right)\right| / 2$ and $\ell:=w_{1} n^{2}-w_{2} p+4$.
- k is not polynomially bounded in terms of n, but this is not a problem since the parameter is ℓ, which is bounded by $5 n^{4}$.
- This construction can be performed in polynomial time in $t \cdot n$.

Idea of the proof

Given $\left(G_{1}, p\right), \ldots,\left(G_{t}, p\right)$, we create G^{*} as follows:

- We define $w_{1}:=5 n^{2}$ and $w_{2}:=5$.
- And we set $k:=\left|V\left(G^{*}\right)\right| / 2$ and $\ell:=w_{1} n^{2}-w_{2} p+4$.
- k is not polynomially bounded in terms of n, but this is not a problem since the parameter is ℓ, which is bounded by $5 n^{4}$.
- This construction can be performed in polynomial time in $t \cdot n$.

Claim $\left(G^{*}, k, \ell\right)$ is a Yes-instance of Edge-Weighted p-REC iff there exists $i \in\{1, \ldots, t\}$ such that $\left(G_{i}, p\right)$ is a Yes-instance of MaX CuT․

Considering the maximum degree as a parameter

Considering the $\Delta(G)$ as an extra parameter turns the problem easier?

Considering the maximum degree as a parameter

Considering the $\Delta(G)$ as an extra parameter turns the problem easier?
TheoremDetermining whether a connected graph G is λ_{k}-connected isNP-complete when k is part of the input, even if $\Delta(G) \leqslant 5$.

Considering the maximum degree as a parameter

Considering the $\Delta(G)$ as an extra parameter turns the problem easier?

Abstract

Theorem Determining whether a connected graph G is λ_{k}-connected is NP-complete when k is part of the input, even if $\Delta(G) \leqslant 5$.

Theorem

The p-REC problem is FPT when parameterized by k and the maximum degree Δ of the input graph.

Algorithm based on a simple exhaustive search + Min Cut algorithm.

Idea of the NP-completeness reduction

- Reduction from the 3-Dimensional Matching (3DM) problem:

Given a set $W=R \cup B \cup Y$, where R, B, Y are disjoint sets with $|R|=|B|=|Y|=m$, and a set of triples $T \subseteq R \times B \times Y$, the question is whether there exists a matching $M \subseteq T$ covering W, i.e., $|M|=m$ and each element of $W=R \cup B \cup Y$ occurs in exactly one triple of M.

Idea of the NP-completeness reduction

- Reduction from the 3-Dimensional Matching (3DM) problem:

Given a set $W=R \cup B \cup Y$, where R, B, Y are disjoint sets with $|R|=|B|=|Y|=m$, and a set of triples $T \subseteq R \times B \times Y$, the question is whether there exists a matching $M \subseteq T$ covering W, i.e., $|M|=m$ and each element of $W=R \cup B \cup Y$ occurs in exactly one triple of M.

- 3DM is NP-complete even if each element of W appears in 2 or 3 triples only.

Idea of the NP-completeness reduction

- Reduction from the 3-Dimensional Matching (3DM) problem:

Given a set $W=R \cup B \cup Y$, where R, B, Y are disjoint sets with $|R|=|B|=|Y|=m$, and a set of triples $T \subseteq R \times B \times Y$, the question is whether there exists a matching $M \subseteq T$ covering W, i.e., $|M|=m$ and each element of $W=R \cup B \cup Y$ occurs in exactly one triple of M.

- 3DM is NP-complete even if each element of W appears in 2 or 3 triples only.
- Our reduction is an appropriate modification of one given in

Idea of the NP-completeness reduction (2)

Given an instance (W, T) of 3DM, we build a graph G with $\Delta(G) \leqslant 5$:

Where $n_{b}=2 m^{3}$ and $n_{a}=(3 m+|T|) n_{b}+5 m-|T|-1$.

Idea of the NP-completeness reduction (2)

Given an instance (W, T) of 3DM, we build a graph G with $\Delta(G) \leqslant 5$:

Where $n_{b}=2 m^{3}$ and $n_{a}=(3 m+|T|) n_{b}+5 m-|T|-1$.
Claim G contains two disjoint connected subgraphs of order $n / 2 \Leftrightarrow$ T contains a matching covering W.

Next section is...

(1) Introduction

(2) Our results
(3) Ideas of some of the proofs
(4) Further research

Conclusions and further research

Problem	Classical complexity		Parameterized complexity with parameter				
	$k+\ell$	k	ℓ	$k+\Delta$	$\ell+\Delta$		
Is G λ_{k}-conn. ?	NPc, even if $\Delta \leqslant 5$	\star	FPT	\star	FPT	\star	
$\lambda_{k}(G) \leqslant \ell ?$	NPh, even if G is λ_{k}-conn.	FPT (known $)$	W[1]-hard	No poly kernels	FPT	$?$	

Conclusions and further research

Problem	Classical complexity	Parameterized complexity with parameter				
	$k+\ell$	k	ℓ	$k+\Delta$	$\ell+\Delta$	
Is G λ_{k}-conn. ?	NPc, even if $\Delta \leqslant 5$	\star	FPT	\star	FPT	\star
$\lambda_{k}(G) \leqslant \ell ?$	NPh, even if G is λ_{k}-conn.	FPT (known $)$	W[1]-hard	No poly kernels	FPT	$?$

- Main open question: is the problem FPT when parameterized by ℓ ?

Conclusions and further research

Problem	Classical complexity		Parameterized complexity with parameter				
	$k+\ell$	k	ℓ	$k+\Delta$	$\ell+\Delta$		
Is G λ_{k}-conn. ?	NPc, even if $\Delta \leqslant 5$	\star	FPT	\star	FPT	\star	
$\lambda_{k}(G) \leqslant \ell ?$	NPh, even if G is λ_{k}-conn.	FPT (known $)$	W[1]-hard	No poly kernels	FPT	$?$	

- Main open question: is the problem FPT when parameterized by ℓ ? For Min Bisection, the non-existence of polynomial kernels was known before the problem was recently proved to be FPT.

Conclusions and further research

Problem	Classical complexity	Parameterized complexity with parameter				
		$k+\ell$	k	ℓ	$k+\Delta$	$\ell+\Delta$
$\begin{gathered} \text { Is G } \\ \lambda_{k} \text {-conn. ? } \end{gathered}$	NPc, even if $\Delta \leqslant 5$	*	FPT	*	FPT	*
$\lambda_{k}(G) \leqslant \ell ?$	NPh, even if G is λ_{k}-conn.	FPT (known)	W[1]-hard	No poly kernels	FPT	?

- Main open question: is the problem FPT when parameterized by ℓ ? For Min Bisection, the non-existence of polynomial kernels was known before the problem was recently proved to be FPT.
- We don't know it even for the combined parameter $\ell+\Delta$.

Adding Δ as a parameter may not make things easier, as Min Bisection is as hard in 3 -regular graphs as in general graphs.

Conclusions and further research

Problem	Classical	Parameterized complexity with parameter				
	complexity	$k+\ell$	k	ℓ	$k+\Delta$	$\ell+\Delta$
Is G λ_{k}-conn. ?	NPc, even if $\Delta \leqslant 5$	\star	FPT	\star	FPT	\star
$\lambda_{k}(G) \leqslant \ell ?$	NPh, even if G is λ_{k}-conn.	FPT (known)	W[1]-hard	No poly kernels	FPT	$?$

- Main open question: is the problem FPT when parameterized by ℓ ?

For Min Bisection, the non-existence of polynomial kernels was known before the problem was recently proved to be FPT.

- We don't know it even for the combined parameter $\ell+\Delta$.

Adding Δ as a parameter may not make things easier, as Min Bisection is as hard in 3 -regular graphs as in general graphs.

- Polynomial kernels with parameter $k+\ell$?

Gràcies!

