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Edge-connectivity

We consider undirected simple graphs without loops or multiple edges.

A set S ⊆ E (G ) of a graph G is an edge-cut if G − S is disconnected.

The edge-connectivity λ(G ) is defined as

λ(G ) = min{|S | : S ⊆ E (G ) is an edge-cut}.

λ(G ) can be computed in poly time by a Max Flow algorithm.
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Edge-connectivity and minimum degree

Clearly, λ(G ) ≤ δ(G ), where δ(G ) is the minimum degree of G .

A graph G is maximally edge-connected if λ(G ) = δ(G ).

G H

λ(G ) = δ(G ) = 3 = λ(H) = δ(H).

A graph G is superconnected if every minimum edge-cut consists of
the edges adjacent to one vertex.
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Edge-connectivity and minimum degree

Clearly, λ(G ) ≤ δ(G ), where δ(G ) is the minimum degree of G .

A graph G is maximally edge-connected if λ(G ) = δ(G ).

G H

G is superconnected while H is not.

A graph G is superconnected if every minimum edge-cut consists of
the edges adjacent to one vertex.
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Restricted edge-connectivity

Definition [Esfahanian and Hakimi ’88]

An edge-cut S is a restricted edge-cut if every component of G − S has at
least 2 vertices.

The restricted edge-connectivity λ2(G ) of a graph G is defined as

λ2(G ) = min{|S | : S ⊆ E (G ) is a restricted edge-cut}.

G H

λ2(G ) = 4 and λ2(H) = 3.
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Restricted edge-connectivity

λ2 is not defined for this graph.

A connected graph G is called λ2-connected if λ2(G ) exists.

Theorem [Esfahanian and Hakimi ’88]

Every connected graph G that is not a star is λ2-connected and satisfies
λ2(G ) ≤ ξ(G ).

Where ξ(G ) = min{d(u) + d(v)− 2 : uv ∈ E (G )} ≥ 2δ(G )− 2.
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k-restricted edge-connectivity

In 1994, Fàbrega and Fiol proposed the concept of k-restricted
edge-connectivity, where k is a positive integer.

Definition [Fàbrega and Fiol ’94]

An edge cut S is a k-restricted edge cut if every component of G − S has
at least k vertices.

The k-restricted edge-connectivity λk(G ) of a graph G is defined as

λk(G ) = min{|S | : S ⊆ E (G ) is a k-restricted edge-cut}.

A connected graph G is called λk -connected if λk(G ) exists.

For any k-restricted cut S of size λk(G ), the graph G − S has exactly two
connected components.
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k-restricted edge-connectivity

A k-flower is a graph containing a cut vertex u such that every component
of G − u has at most k − 1 vertices.

k-1

λk is not defined for k-flowers.

Theorem [Zhang and Yuan ’05]

Every connected graph G that is not a k-flower with k − 1 ≤ δ(G ) is
λk -connected and satisfies λk(G ) ≤ ξk(G ), where
ξk(G ) = min{|∂(X )| : |V (X )| = k and G [X ] is connected }.

For a set X ⊆ V (G ), we denote by ∂(X ) the set of edges leaving X .

Then, ξ1(G ) = δ(G ) and ξ2(G ) = ξ(G ).
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A lot of combinatorial results about λk

Introduction of λ2: [Esfahanian, Hakimi ’88]

Introduction of λk : [Fàbrega and Fiol ’94]

Case k = 3: [Bonsma, Ueffing, Volkmann. ’02]

General bounds on λk : [Zhang, Yuan ’05]

λk in graphs of large girth: [Balbuena, Carmona, Fàbrega, Fiol ’97]

λk in triangle-free graphs: [Yuan, Liu ’10] [Holtkamp, Meierling, Montejano ’12]
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Meanwhile, in the parameterized complexity community...

Chitnis, Cygan, Hajiaghayi, and Pilipczuk2 defined in 2012 this notion:

Let G be a connected graph. A partition (V1,V2) of V (G ) is a
(k, `)-separation if |V1|, |V2| > k, |∂(V1)| 6 `, and G [V1] and G [V2]
are both connected.

A graph is (k , `)-connected if it does not have a (k , `− 1)-separation.

F Both notions are essentially the same!

λk(G ) 6 ` if and only if G admits a (k − 1, `)-separation.
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(k , `)-separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

FPT algorithms for cut problems. [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

A similar notion existed for vertex-cuts. [Kawarabayashi, Thorup ’11]

This technique has proved very useful. [Cygan, Lokshtanov, Pilipczuk2, Saurabh ’14]

[Kim, Oum, Paul, S., Thilikos ’15]

? Only one known algorithmic result about (k , `)-separations:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12)

There exists an algorithm that given a n-vertex connected graph G and two

integers k , `, either finds a (k, `)-separation, or reports that no such separation

exists, in time (k + `)O(min{k,`})n3 log n.

? We initiate a systematic study of the complexity of computing the
k-restricted edge-connectivity of a graph.

12/30



(k , `)-separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

FPT algorithms for cut problems. [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

A similar notion existed for vertex-cuts. [Kawarabayashi, Thorup ’11]

This technique has proved very useful. [Cygan, Lokshtanov, Pilipczuk2, Saurabh ’14]

[Kim, Oum, Paul, S., Thilikos ’15]

? Only one known algorithmic result about (k , `)-separations:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12)

There exists an algorithm that given a n-vertex connected graph G and two

integers k , `, either finds a (k , `)-separation, or reports that no such separation

exists, in time (k + `)O(min{k,`})n3 log n.

? We initiate a systematic study of the complexity of computing the
k-restricted edge-connectivity of a graph.

12/30



(k , `)-separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

FPT algorithms for cut problems. [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12]

A similar notion existed for vertex-cuts. [Kawarabayashi, Thorup ’11]

This technique has proved very useful. [Cygan, Lokshtanov, Pilipczuk2, Saurabh ’14]

[Kim, Oum, Paul, S., Thilikos ’15]

? Only one known algorithmic result about (k , `)-separations:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12)

There exists an algorithm that given a n-vertex connected graph G and two

integers k , `, either finds a (k , `)-separation, or reports that no such separation

exists, in time (k + `)O(min{k,`})n3 log n.

? We initiate a systematic study of the complexity of computing the
k-restricted edge-connectivity of a graph.

12/30



Next section is...

1 Introduction

2 Our results

3 Ideas of some of the proofs

4 Further research

13/30



Summary of our results

Problem Classical Parameterized complexity with parameter
complexity k + ` k ` k + ∆ `+ ∆

Is G NPc, even
λk -conn. ? if ∆ 6 5 ? FPT ? FPT ?

NPh, even FPT No poly
λk(G ) 6 ` ? if G is (known) W[1]-hard kernels FPT ?

λk -conn.

Table: Summary of our results, where ∆ denotes the maximum degree of the
input graph G , and NPc (resp. NPh) stands for NP-complete (resp. NP-hard).
The symbol ‘?’ denotes that the problem is not defined for that parameter.
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Some words on parameterized complexity

Idea given an NP-hard problem with input size n, fix one parameter
k of the input to see whether the problem gets more “tractable”.

Example: the size of a Vertex Cover.

Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in time

f (k) · nO(1), for some function f .

Examples: k-Vertex Cover, k-Longest Path.
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Determining whether a graph is λk-connected is hard

Given a graph G , if n is even and k = n/2, it is NP-complete to
determine whether G contains two vertex-disjoint connected
subgraphs of order n/2 each. [Dyer, Frieze ’85]

This implies that the following problem is NP-hard:

Restricted Edge-connectivity (REC)

Instance: A connected graph G = (V ,E ) and an integer k .
Output: λk(G ), or a report that G is not λk -connected.

Even if the input graph G is guaranteed to be λk -connected,
computing λk(G ) remains hard:

Theorem

The REC problem is NP-hard restricted to λk -connected graphs.
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Proof of the Theorem

Proof for n even and k = n/2. Reduction from Minimum Bisection
in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski ’02]

Given G , we build G ′ by adding to G two non-adjacent universal
vertices v1 and v2. Note that G ′ is λn/2-connected.

Claim v1 and v2 belong to different parts in any optimal solution in G ′.

Thus, REC problem in G ′ ≡ Minimum Bisection problem in G .
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A parameterized analysis of the REC problem

Since the REC problem is NP-hard, we parameterize it:

Parameterized Restricted Edge-connectivity (p-REC)

Instance: A connected graph G and two integers k and `.
Question: λk(G ) 6 ` ?

Parameter 1: The integers k and `.
Parameter 2: The integer k .
Parameter 3: The integer `.

The p-REC problem is FPT when parameterized by both k and `:

Theorem (Chitnis, Cygan, Hajiaghayi, Pilipczuk2 ’12)

There exists an algorithm that given a n-vertex connected graph G and two

integers k , `, either finds a (k, `)-separation, or reports that no such separation

exists, in time (k + `)O(min{k,`})n3 log n.
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W[1]-hardness with parameter k only

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

It is easy to see that the problem is in XP: solvable in time nO(k).

Reduction from k-Clique: the same as the one for Cutting k
Vertices from a Graph, only the analysis changes. [Downey et al. ’03]

Given G → G ′:

n2 − d

v

C = Kn3

(v)
G

G

n representative vertices

Consider ` = kn2 − 2
(k

2

)
and take k ≤ n/2.

Claim 1 If K ⊆ V (G ) is a k-clique in G , then |∂(K )| = `.

Claim 2 If K ⊆ V (G ′) such that G [K ] and G ′ − K are connected,
|K | ≥ k , |V (G ′) \ K | ≥ k , and |∂(K )| ≤ `, then ...

20/30



W[1]-hardness with parameter k only

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

Reduction from k-Clique: the same as the one for Cutting k
Vertices from a Graph, only the analysis changes. [Downey et al. ’03]

Given G → G ′:

n2 − d

v

C = Kn3

(v)
G

G

n representative vertices

Consider ` = kn2 − 2
(k

2

)
and take k ≤ n/2.

Claim 1 If K ⊆ V (G ) is a k-clique in G , then |∂(K )| = `.

Claim 2 If K ⊆ V (G ′) such that G [K ] and G ′ − K are connected,
|K | ≥ k , |V (G ′) \ K | ≥ k , and |∂(K )| ≤ `, then ...

20/30



W[1]-hardness with parameter k only

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

Reduction from k-Clique: the same as the one for Cutting k
Vertices from a Graph, only the analysis changes. [Downey et al. ’03]

Given G → G ′:

n2 − d

v

C = Kn3

(v)
G

G

n representative vertices

Consider ` = kn2 − 2
(k

2

)
and take k ≤ n/2.

Claim 1 If K ⊆ V (G ) is a k-clique in G , then |∂(K )| = `.

Claim 2 If K ⊆ V (G ′) such that G [K ] and G ′ − K are connected,
|K | ≥ k , |V (G ′) \ K | ≥ k , and |∂(K )| ≤ `, then ...

20/30



W[1]-hardness with parameter k only

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

Reduction from k-Clique: the same as the one for Cutting k
Vertices from a Graph, only the analysis changes. [Downey et al. ’03]

Given G → G ′:

n2 − d

v

C = Kn3

(v)
G

G

n representative vertices

Consider ` = kn2 − 2
(k

2

)
and take k ≤ n/2.

Claim 1 If K ⊆ V (G ) is a k-clique in G , then |∂(K )| = `.

Claim 2 If K ⊆ V (G ′) such that G [K ] and G ′ − K are connected,
|K | ≥ k , |V (G ′) \ K | ≥ k , and |∂(K )| ≤ `, then ...

20/30



W[1]-hardness with parameter k only

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

Reduction from k-Clique: the same as the one for Cutting k
Vertices from a Graph, only the analysis changes. [Downey et al. ’03]

Given G → G ′:

n2 − d

v

C = Kn3

(v)
G

G

n representative vertices

Consider ` = kn2 − 2
(k

2

)
and take k ≤ n/2.

Claim 1 If K ⊆ V (G ) is a k-clique in G , then |∂(K )| = `.

Claim 2 If K ⊆ V (G ′) such that G [K ] and G ′ − K are connected,
|K | ≥ k , |V (G ′) \ K | ≥ k , and |∂(K )| ≤ `, then ...

20/30



W[1]-hardness with parameter k only

Theorem

The p-REC problem is W[1]-hard when parameterized by k.

Reduction from k-Clique: the same as the one for Cutting k
Vertices from a Graph, only the analysis changes. [Downey et al. ’03]

Given G → G ′:

n2 − d

v

C = Kn3

(v)
G

G

n representative vertices

Consider ` = kn2 − 2
(k

2

)
and take k ≤ n/2.

Claim 1 If K ⊆ V (G ) is a k-clique in G , then |∂(K )| = `.

Claim 2 If K ⊆ V (G ′) such that G [K ] and G ′ − K are connected,
|K | ≥ k , |V (G ′) \ K | ≥ k , and |∂(K )| ≤ `, then ...

20/30



Let’s recap...

Theorem

Given a graph G and a positive integer k, determining whether G is
λk -connected is NP-hard.

Theorem

Given a graph G and two integers k , ` such that G is λk -connected,
determining whether λk(G ) 6 ` is W[1]-hard when parameterized by k.

Theorem

Given a graph G and a positive integer k, determining whether G is
λk -connected is FPT when parameterized by k.

The proof is based on a simple application of the technique of splitters.

F Parameterized complexity of λk(G ) 6 `? with parameter `?
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Parameterized complexity with parameter `

Theorem

The p-REC problem does not admit polynomial kernels when
parameterized by `, unless coNP ⊆ NP/poly.

A kernel for a parameterized problem Π is an algorithm that given
(x , k) outputs, in time polynomial in |x |+ k , an instance (x ′, k ′) s.t.:

? (x , k) ∈ Π if and only if (x ′, k ′) ∈ Π, and

? Both |x ′|, k ′ 6 g(k) , where g is some computable function.

If g(k) = kO(1): we say that Π admits a polynomial kernel.

Folklore result: Π is FPT ⇔ Π admits a kernel

Question: which FPT problems admit polynomial kernels?

It is possible to prove that polynomial kernels are unlikely to exist.
[Bodlaender, Downey, Fellows, Hermelin ’08] [Bodlaender, Thomassé, Yeo ’09] [Bodlaender, Jansen, Kratsch ’11]
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Non-existence of polynomial kernels with parameter `

The proof is inspired by the one to prove that the Min Bisection
does not admit polynomial kernels. [van Bevern et al. ’13]

Main difference: both parts left out by the edge-cut are connected.

We use the technique of cross-composition [Bodlaender, Jansen, Kratsch ’11]

Cross-composition from Max Cut (which is NP-hard) to
Edge-Weighted p-REC parameterized by ` is a poly-time algorithm
that, given t instances (G1, p1), . . . , (Gt , pt) of Max Cut, constructs one
instance (G∗, k, `) of Edge-Weighted p-REC such that:

1 (G∗, k , `) is Yes iff one of the t instances of Max Cut is Yes, and
2 ` is polynomially bounded as a function of max16i6t |V (Gi )|.

We may safely assume that t is odd, that for each 1 6 i 6 t we have
|V (Gi )| =: n and pi =: p, and that 1 6 p 6 n2.
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Idea of the proof

Given (G1, p), . . . , (Gt , p), we create G∗ as follows:

w1

w1

w1

w1

V1 V ′
1 V2 V ′

2 Vi V ′
i Vt V ′

t

w1w1w1

1

1

1

1

−w2s11

s21

s12

s22
s2i

s1i s1t

s2t

We define w1 := 5n2 and w2 := 5.

And we set k := |V (G ∗)|/2 and ` := w1n2 − w2p + 4.

k is not polynomially bounded in terms of n, but this is not a problem
since the parameter is `, which is bounded by 5n4.

This construction can be performed in polynomial time in t · n.

Claim (G ∗, k, `) is a Yes-instance of Edge-Weighted p-REC iff there
exists i ∈ {1, . . . , t} such that (Gi , p) is a Yes-instance of Max Cut.
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Considering the maximum degree as a parameter

Considering the ∆(G ) as an extra parameter turns the problem easier?

Theorem

Determining whether a connected graph G is λk -connected is
NP-complete when k is part of the input, even if ∆(G ) 6 5.

Theorem

The p-REC problem is FPT when parameterized by k and the maximum
degree ∆ of the input graph.

Algorithm based on a simple exhaustive search + Min Cut algorithm.
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Idea of the NP-completeness reduction

Reduction from the 3-Dimensional Matching (3DM) problem:

Given a set W = R ∪ B ∪ Y , where R,B,Y are disjoint sets with

|R| = |B| = |Y | = m, and a set of triples T ⊆ R × B × Y , the question is

whether there exists a matching M ⊆ T covering W , i.e., |M| = m and each

element of W = R ∪ B ∪ Y occurs in exactly one triple of M.

Elements

Triples T

W = R ∪B ∪ Y

(r, b, y)

r b y

3DM is NP-complete even if each element of W appears in 2 or 3
triples only. [Dyer, Frieze ’86]

Our reduction is an appropriate modification of one given in [Dyer, Frieze ’85]
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Idea of the NP-completeness reduction (2)

Given an instance (W ,T ) of 3DM, we build a graph G with ∆(G ) 6 5:

Elements

Triples

a

b

na

nb

nb

T

Ta

Tb

W

Pa

Where nb = 2m3 and na = (3m + |T |)nb + 5m − |T | − 1.

Claim G contains two disjoint connected subgraphs of order n/2 ⇔
T contains a matching covering W .
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Next section is...

1 Introduction

2 Our results

3 Ideas of some of the proofs

4 Further research
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Conclusions and further research

Problem Classical Parameterized complexity with parameter
complexity k + ` k ` k + ∆ `+ ∆

Is G NPc, even
λk -conn. ? if ∆ 6 5 ? FPT ? FPT ?

NPh, even FPT No poly
λk(G ) 6 ` ? if G is (known) W[1]-hard kernels FPT ?

λk -conn.

Main open question: is the problem FPT when parameterized by `?

For Min Bisection, the non-existence of polynomial kernels was known

before the problem was recently proved to be FPT. [Cygan et al. ’14]

We don’t know it even for the combined parameter `+ ∆.

Adding ∆ as a parameter may not make things easier, as Min Bisection

is as hard in 3-regular graphs as in general graphs. [Berman, Karpinski ’02]

Polynomial kernels with parameter k + ` ?
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