On the complexity of computing the

k-restricted edge-connectivity of a graph

Luis P. Montejano! Ignasi Sau?

Séminaire AIGCo
Montpellier, 11 juin 2015

1 Département de Mathématiques, Université de Montpellier 2, France

2 CNRS, LIRMM, Montpellier, France

1/30

Outline of the talk

@ Introduction
© Our results
© !deas of some of the proofs

@ Further research

2/30

@ Introduction

3/30

Edge-connectivity

@ We consider undirected simple graphs without loops or multiple edges.

e Aset S C E(G) of a graph G is an edge-cut if G — S is disconnected.

@ The edge-connectivity A\(G) is defined as

A(G) = min{|S| : S C E(G) is an edge-cut}.

@ A(G) can be computed in poly time by a MAX FLOW algorithm.

4/30

Edge-connectivity and minimum degree

e Clearly, A\(G) < 6(G), where 6(G) is the minimum degree of G.

5/30

Edge-connectivity and minimum degree

e Clearly, A\(G) < 6(G), where 6(G) is the minimum degree of G.

@ A graph G is maximally edge-connected if A(G) = 6(G).

5/30

Edge-connectivity and minimum degree

e Clearly, A\(G) < 6(G), where 6(G) is the minimum degree of G.

@ A graph G is maximally edge-connected if A(G) = 6(G).

G H

AG) = §(G) = 3= A(H) = §(H).

@ A graph G is superconnected if every minimum edge-cut consists of
the edges adjacent to one vertex.

5/30

Edge-connectivity and minimum degree

e Clearly, A\(G) < 6(G), where 6(G) is the minimum degree of G.

@ A graph G is maximally edge-connected if A(G) = 6(G).

G H

G is superconnected while H is not.

@ A graph G is superconnected if every minimum edge-cut consists of
the edges adjacent to one vertex.

5/30

Restricted edge-connectivity

Definition [Esfahanian and Hakimi '88]

An edge-cut S is a restricted edge-cut if every component of G — S has at
least 2 vertices.

The restricted edge-connectivity A\2(G) of a graph G is defined as

A2(G) = min{|S|: S C E(G) is a restricted edge-cut}.

/\Q(G) =4 and /\Q(H) =3.

6/30

Restricted edge-connectivity

A2 is not defined for this graph.

7/30

Restricted edge-connectivity

A2 is not defined for this graph.

A connected graph G is called A\y-connected if \2(G) exists.

7/30

Restricted edge-connectivity

A2 is not defined for this graph.

A connected graph G is called A\y-connected if \2(G) exists.
Theorem [Esfahanian and Hakimi '88]

Every connected graph G that is not a star is Ap-connected and satisfies

A2(G) < &(G).

Where £(G) = min{d(u) + d(v) —2:uv € E(G)} > 2§(G) — 2.

7/30

k-restricted edge-connectivity

In 1994, Fabrega and Fiol proposed the concept of k-restricted
edge-connectivity, where k is a positive integer.

Definition [Fabrega and Fiol '94]

An edge cut S is a k-restricted edge cut if every component of G — S has
at least k vertices.

The k-restricted edge-connectivity A\x(G) of a graph G is defined as

A(G) =min{|S| : S C E(G) is a k-restricted edge-cut}.

8/30

k-restricted edge-connectivity

In 1994, Fabrega and Fiol proposed the concept of k-restricted
edge-connectivity, where k is a positive integer.

Definition [Fabrega and Fiol '94]

An edge cut S is a k-restricted edge cut if every component of G — S has
at least k vertices.

The k-restricted edge-connectivity A\x(G) of a graph G is defined as

A(G) =min{|S| : S C E(G) is a k-restricted edge-cut}.

A connected graph G is called A\i-connected if A\, (G) exists.

8/30

k-restricted edge-connectivity

In 1994, Fabrega and Fiol proposed the concept of k-restricted
edge-connectivity, where k is a positive integer.

Definition [Fabrega and Fiol '94]

An edge cut S is a k-restricted edge cut if every component of G — S has
at least k vertices.

The k-restricted edge-connectivity A\x(G) of a graph G is defined as

A(G) =min{|S| : S C E(G) is a k-restricted edge-cut}.

A connected graph G is called A\i-connected if A\, (G) exists.

For any k-restricted cut S of size Ax(G), the graph G — S has exactly two
connected components.

8/30

k-restricted edge-connectivity

A k-flower is a graph containing a cut vertex u such that every component
of G — u has at most k — 1 vertices.

Ak is not defined for k-flowers.

9/30

k-restricted edge-connectivity

A k-flower is a graph containing a cut vertex u such that every component
of G — u has at most k — 1 vertices.

Ak is not defined for k-flowers.

Theorem [Zhang and Yuan '05]

Every connected graph G that is not a k-flower with k —1 < §(G) is
Ak-connected and satisfies A\ (G) < &(G), where
&k(G) = min{|0(X)]| : |[V(X)| = k and G[X] is connected }.

For a set X C V/(G), we denote by J(X) the set of edges leaving X.
Then, &1(G) = §(G) and &(G) = &(G).

9/30

A lot of combinatorial results about A4

@ Introduction of As: [Esfahanian, Hakimi '88]
@ Introduction OfAk: [Fabrega and Fiol '94]
o Case k = 3: [Bonsma, Ueffing, Volkmann. '02]
@ General bounds on \j: [Zhang, Yuan '05]
@ Ak in graphs of large girth: [Balbuena, Carmona, Fabrega, Fiol '97]
@)\ in triangle-free graphs: [Yuan, Liu '10] [Holtkamp, Meierling, Montejano '12]

10/30

Meanwhile, in the parameterized complexity community...

Chitnis, Cygan, Hajiaghayi, and Pilipczuk® defined in 2012 this notion:

@ Let G be a connected graph. A partition (V4, V2) of V(G) is a
(k, 0)-separation if V4|, |Va| > k, [0(V4)| < ¢, and G[V4] and G[V2]
are both connected.

>){ > K

\
Congecie A

11/30

Meanwhile, in the parameterized complexity community...

Chitnis, Cygan, Hajiaghayi, and Pilipczuk® defined in 2012 this notion:

@ Let G be a connected graph. A partition (V4, V2) of V(G) is a
(k, 0)-separation if V4|, |Va| > k, [0(V4)| < ¢, and G[V4] and G[V2]
are both connected.

>){ 7,<

\
Congecie A

foanecte b

e A graph is (k,¢)-connected if it does not have a (k, ¢ — 1)-separation.

11/30

Meanwhile, in the parameterized complexity community...

Chitnis, Cygan, Hajiaghayi, and Pilipczuk® defined in 2012 this notion:

@ Let G be a connected graph. A partition (V4, V2) of V(G) is a
(k, 0)-separation if V4|, |Va| > k, [0(V4)| < ¢, and G[V4] and G[V2]
are both connected.

>){ 7,<

\
Congecie A

foanecte b

e A graph is (k,¢)-connected if it does not have a (k, ¢ — 1)-separation.

* ’ Both notions are essentially the same! ‘

Ac(G) < £ if and only if G admits a (k — 1, /)-separation.

11/30

(k, ()-separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

e FPT algorithms for cut problems. [Chitnis, Cygan, Hajiaghayi, Pilipczuk® '12]
o A S|m||ar nOtion eX|Sted for vertex-cuts. [Kawarabayashi, Thorup '11]
o ThIS teChanue haS proved Very Useful. [Cygan, Lokshtanov, Pilipczuk2, Saurabh '14]

[Kim, Oum, Paul, S., Thilikos "15]

12/30

(k, ()-separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

e FPT algorithms fOI’ cut problems. [Chitnis, Cygan, Hajiaghayi, Pilipczuk® '12]
o A S|m||ar nOtion eX|Sted for vertex-cuts. [Kawarabayashi, Thorup '11]
o ThIS teChanue haS proved Very Useful. [Cygan, Lokshtanov, Pilipczuk2, Saurabh '14]

[Kim, Oum, Paul, S., Thilikos "15]

* Only one known algorithmic result about (k, ¢)-separations:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk? '12)

There exists an algorithm that given a n-vertex connected graph G and two
integers k,{, either finds a (k,{)-separation, or reports that no such separation
exists, in time (k + £)O(min{k:t) p3 Jog p.

12/30

(k, ()-separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

] FPT a|g0rlthms fOI’ Cut pI’Ob|emS [Chitnis, Cygan, Hajiaghayi, Pilipczuk2 !
o A S|m||ar nOtion eX|Sted for vertex-cuts. [Kawarabayashi, Thorup ’
o ThIS teChanue haS proved Very Useful. [Cygan, Lokshtanov, Pilipczuk2, Saurabh '

[Kim, Oum, Paul, S., Thilikos *

* Only one known algorithmic result about (k, ¢)-separations:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk? '12)

There exists an algorithm that given a n-vertex connected graph G and two
integers k,{, either finds a (k,{)-separation, or reports that no such separation
exists, in time (k + £)O(min{k:t) p3 Jog p.

* We initiate a systematic study of the complexity of computing the
k-restricted edge-connectivity of a graph.

12/30

© Our results

13/30

Summary of our results

Problem Classical Parameterized complexity with parameter
complexity k+e] k | ¢ Jk+AJl+A
Is G NPc, even
Ag-conn. ? if A <5 * FPT * FPT *
NPh, even FPT No poly
M(G) <7 if Gis (known) | W[1]-hard | kernels | FPT ?
Ak-conn.

Table: Summary of our results, where A denotes the maximum degree of the
input graph G, and NPc (resp. NPh) stands for NP-complete (resp. NP-hard).
The symbol ‘x’ denotes that the problem is not defined for that parameter.

14/30

© !deas of some of the proofs

15/30

Some words on parameterized complexity

° given an NP-hard problem with input size n, fix one parameter
k of the input to see whether the problem gets more “tractable”.

Example: the size of a VERTEX COVER.

@ Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in time

f(k)-n°M) for some function f.

Examples: k-VERTEX COVER, k-LONGEST PATH.

16/30

Determining whether a graph is A\x-connected is hard

e Given a graph G, if nis even and k = n/2, it is NP-complete to
determine whether G contains two vertex-disjoint connected
subgraphs of order n/2 each. [Dyer, Frieze '85]

17/30

Determining whether a graph is A\x-connected is hard

e Given a graph G, if nis even and k = n/2, it is NP-complete to
determine whether G contains two vertex-disjoint connected
subgraphs of order n/2 each. [Dyer, Frieze '85]

@ This implies that the following problem is NP-hard:

RESTRICTED EDGE-CONNECTIVITY (REC)

Instance: A connected graph G = (V/, E) and an integer k.
Output:)\, (G), or a report that G is not \,-connected.

17/30

Determining whether a graph is A\x-connected is hard

e Given a graph G, if nis even and k = n/2, it is NP-complete to
determine whether G contains two vertex-disjoint connected
subgraphs of order n/2 each. [Dyer, Frieze '85]

@ This implies that the following problem is NP-hard:

RESTRICTED EDGE-CONNECTIVITY (REC)

Instance: A connected graph G = (V/, E) and an integer k.
Output:)\, (G), or a report that G is not \,-connected.

@ Even if the input graph G is guaranteed to be \,-connected,
computing Ax(G) remains hard:

The REC problem is NP-hard restricted to \i-connected graphs. \

17/30

Proof of the Theorem

@ Proof for n even and k = n/2. Reduction from MINIMUM BISECTION
in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]

18/30

Proof of the Theorem

@ Proof for n even and k = n/2. Reduction from MINIMUM BISECTION
in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]

@ Given G, we build G’ by adding to G two non-adjacent universal
vertices v; and v». Note that G’ is Anj2-connected.

18/30

Proof of the Theorem

@ Proof for n even and k = n/2. Reduction from MINIMUM BISECTION
in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]

@ Given G, we build G’ by adding to G two non-adjacent universal
vertices v; and v». Note that G’ is Anj2-connected.

vi and v, belong to different parts in any optimal solution in G’.

18/30

Proof of the Theorem

@ Proof for n even and k = n/2. Reduction from MINIMUM BISECTION
in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]

@ Given G, we build G’ by adding to G two non-adjacent universal
vertices v; and v». Note that G’ is Anj2-connected.

vi and v, belong to different parts in any optimal solution in G’.

18/30

Proof of the Theorem

@ Proof for n even and k = n/2. Reduction from MINIMUM BISECTION
in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]

@ Given G, we build G’ by adding to G two non-adjacent universal
vertices v; and v». Note that G’ is Anj2-connected.

vi and v, belong to different parts in any optimal solution in G’.

18/30

Proof of the Theorem

@ Proof for n even and k = n/2. Reduction from MINIMUM BISECTION
in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]

@ Given G, we build G’ by adding to G two non-adjacent universal
vertices v; and v». Note that G’ is Anj2-connected.

vi and v, belong to different parts in any optimal solution in G’.

V) n(\eo’bé omnaze o‘]'etl

@ Thus, REC problem in G’ = MINIMUM BISECTION problem in G.

18/30

A parameterized analysis of the REC problem

Since the REC problem is NP-hard, we parameterize it:

PARAMETERIZED RESTRICTED EDGE-CONNECTIVITY (p-REC)

Instance: A connected graph G and two integers k and /.
Question:)\, (G) < (7

Parameter 1: The integers k and /.

Parameter 2: The integer k.

Parameter 3: The integer /.

19/30

A parameterized analysis of the REC problem

Since the REC problem is NP-hard, we parameterize it:

PARAMETERIZED RESTRICTED EDGE-CONNECTIVITY (p-REC)

Instance: A connected graph G and two integers k and /.
Question:)\, (G) < (7

Parameter 1: The integers k and /.

Parameter 2: The integer k.

Parameter 3: The integer /.

The p-REC problem is FPT when parameterized by both k and ¢:

Theorem (Chitnis, Cygan, Hajiaghayi, Pilipczuk?® '12)

There exists an algorithm that given a n-vertex connected graph G and two
integers k., ¢, either finds a (k, ()-separation, or reports that no such separation
exists, in time (k + £)O(min{k:tH) p3 og .

19/30

WI[1]-hardness with parameter k only
The p-REC problem is W/[1]-hard when parameterized by k. l

o(k).

It is easy to see that the problem is in XP: solvable in time n

20/30

WI[1]-hardness with parameter k only
The p-REC problem is W/[1]-hard when parameterized by k. l

@ Reduction from k-CLIQUE: the same as the one for CUTTING k
VERTICES FROM A GRAPH, only the analysis changes. [powney et al. 03]

20/30

WI[1]-hardness with parameter k only
The p-REC problem is W/[1]-hard when parameterized by k. |

@ Reduction from k-CLIQUE: the same as the one for CUTTING k
VERTICES FROM A GRAPH, only the analysis changes. [powney et al. 03]
o Given G — G”: C=K,3

n? —d_(v)

[] [] \/ L] [] G

v

n representative vertices

20/30

WI[1]-hardness with parameter k only
The p-REC problem is W/[1]-hard when parameterized by k. |

@ Reduction from k-CLIQUE: the same as the one for CUTTING k
VERTICES FROM A GRAPH, only the analysis changes. [powney et al. 03]
o Given G — G”: C=K,3

n? —d_(v)

[] [] \/ L] [] G

v

n representative vertices

o Consider ¢/ = kn? — 2(’2‘) and take k < n/2.

20/30

WI[1]-hardness with parameter k only
The p-REC problem is W/[1]-hard when parameterized by k. \

@ Reduction from k-CLIQUE: the same as the one for CUTTING k
VERTICES FROM A GRAPH, only the analysis changes. [powney et al. 03]
o Given G — G”: C=K,3

n? —d_(v)

[] [] \/ L] [] G

v

n representative vertices

o Consider ¢/ = kn? — 2(’2‘) and take k < n/2.

° If K C V(G) is a k-clique in G, then [9(K)| = ¢,

20/30

WI[1]-hardness with parameter k only
The p-REC problem is W/[1]-hard when parameterized by k. \

@ Reduction from k-CLIQUE: the same as the one for CUTTING k
VERTICES FROM A GRAPH, only the analysis changes. [powney et al. 03]
o Given G — G”: C=K,3

n? —d_(v)

[] [] \/ L] [] G

v

n representative vertices

o Consider ¢/ = kn? — 2(’2‘) and take k < n/2.

° If K C V(G) is a k-clique in G, then [9(K)| = ¢,

° If K C V(G’) such that G[K] and G’ — K are connected,
|K| > k, [V(G")\ K| > k, and |9(K)| < ¢, then ..,

20/30

Given a graph G and a positive integer k, determining whether G is
A-connected is NP-hard.

21/30

Given a graph G and a positive integer k, determining whether G is
A-connected is NP-hard.

Given a graph G and two integers k, (such that G is \y-connected,
determining whether \i(G) < (is W[1]-hard when parameterized by k.

21/30

Given a graph G and a positive integer k, determining whether G is
A-connected is NP-hard.

Given a graph G and two integers k, (such that G is \y-connected,
determining whether \i(G) < (is W[1]-hard when parameterized by k.

Given a graph G and a positive integer k, determining whether G is
Ai-connected is FPT when parameterized by k.

The proof is based on a simple application of the technique of splitters.

21/30

Given a graph G and a positive integer k, determining whether G is
A-connected is NP-hard.

Given a graph G and two integers k, (such that G is \y-connected,
determining whether \i(G) < (is W[1]-hard when parameterized by k.

Given a graph G and a positive integer k, determining whether G is
Ai-connected is FPT when parameterized by k.

The proof is based on a simple application of the technique of splitters.

% Parameterized complexity of | \(G) < ¢7 | with parameter (7

21/30

Parameterized complexity with parameter /¢

The p-REC problem does not admit polynomial kernels when
parameterized by (, unless coNP C NP/ poly.

22/30

Parameterized complexity with parameter /¢

The p-REC problem does not admit polynomial kernels when
parameterized by (, unless coNP C NP/ poly.

@ A kernel for a parameterized problem [1 is an algorithm that given
(x, k) outputs, in time polynomial in |x| + k, an instance (x/, k') s.t.:

* (x,k) € Mif and only if (x', k") € N, and

* Both | |X'|, k" < g(k) |, where g is some computable function.

22/30

Parameterized complexity with parameter /¢

The p-REC problem does not admit polynomial kernels when
parameterized by (, unless coNP C NP/ poly.

@ A kernel for a parameterized problem [1 is an algorithm that given
(x, k) outputs, in time polynomial in |x| + k, an instance (x/, k') s.t.:

* (x,k) € Mif and only if (x', k") € N, and

* Both | |X'|, k" < g(k) |, where g is some computable function.

o If g(k) = kM) we say that M admits a polynomial kernel.

22/30

Parameterized complexity with parameter /¢

The p-REC problem does not admit polynomial kernels when
parameterized by (, unless coNP C NP/ poly.

@ A kernel for a parameterized problem [1 is an algorithm that given
(x, k) outputs, in time polynomial in |x| + k, an instance (x/, k') s.t.:

* (x,k) € Mif and only if (x', k") € N, and

* Both | |X'|, k" < g(k) |, where g is some computable function.

o If g(k) = kM) we say that M admits a polynomial kernel.

o Folklore result: ‘I'I is FPT <« Tl admits a kernel

22/30

Parameterized complexity with parameter /¢

The p-REC problem does not admit polynomial kernels when
parameterized by (, unless coNP C NP/ poly.

@ A kernel for a parameterized problem [1 is an algorithm that given
(x, k) outputs, in time polynomial in |x| + k, an instance (x/, k') s.t.:

* (x,k) € Mif and only if (x', k") € N, and

* Both | |X'|, k" < g(k) |, where g is some computable function.

o If g(k) = kM) we say that M admits a polynomial kernel.

o Folklore result: ‘I'I is FPT <« Tl admits a kernel

@ Question: which FPT problems admit polynomial kernels?

22/30

Parameterized complexity with parameter /¢

The p-REC problem does not admit polynomial kernels when
parameterized by (, unless coNP C NP/ poly.

@ A kernel for a parameterized problem [1 is an algorithm that given
(x, k) outputs, in time polynomial in |x| + k, an instance (x/, k') s.t.:

* (x, k) € Mif and only if (x’, k") € N, and
* Both | |X'|, k" < g(k) |, where g is some computable function.

If g(k) = kOM): we say that M admits a polynomial kernel.

Folklore result: ‘I'I is FPT <« Tl admits a kernel

Question: which FPT problems admit polynomial kernels?

It is possible to prove that polynomial kernels are unlikely to exist.

[Bodlaender, Downey, Fellows, Hermelin '08] [Bodlaender, Thomassé, Yeo '09] [Bodlaender, Jansen, Kratsch '11]

22/30

Non-existence of polynomial kernels with parameter /¢

@ The proof is inspired by the one to prove that the MIN BISECTION
does not admit polynomial kernels. [van Bevern et al. '13]

@ Main difference: both parts left out by the edge-cut are connected.

23/30

Non-existence of polynomial kernels with parameter /¢

@ The proof is inspired by the one to prove that the MIN BISECTION
does not admit polynomial kernels. [van Bevern et al. '13]

@ Main difference: both parts left out by the edge-cut are connected.

@ We use the technique of | cross-composition [Bodlaender, Jansen, Kratsch '11]

23/30

Non-existence of polynomial kernels with parameter /¢

@ The proof is inspired by the one to prove that the MIN BISECTION
does not admit polynomial kernels. [van Bevern et al. '13]

@ Main difference: both parts left out by the edge-cut are connected.

@ We use the technique of ’ cross-composition ‘ [Bodlaender, Jansen, Kratsch '11]

Cross-composition from MaXx CuT (which is NP-hard) to
EDGE-WEIGHTED p-REC parameterized by £ is a poly-time algorithm
that, given t instances (Gy, p1), ..., (G, pr) of Max CUT, constructs one
instance (G*, k, {) of EDGE-WEIGHTED p-REC such that:

©Q (G*, k,0) is YEs iff one of the t instances of MAX CUT is YES, and
@ ¢ is polynomially bounded as a function of maxi<i<: |V(Gj)l.

23/30

Non-existence of polynomial kernels with parameter /¢

@ The proof is inspired by the one to prove that the MIN BISECTION
does not admit polynomial kernels. [van Bevern et al. '13]

@ Main difference: both parts left out by the edge-cut are connected.

@ We use the technique of ’ cross-composition ‘ [Bodlaender, Jansen, Kratsch '11]

Cross-composition from MaXx CuT (which is NP-hard) to
EDGE-WEIGHTED p-REC parameterized by £ is a poly-time algorithm
that, given t instances (Gy, p1), ..., (G, pr) of Max CUT, constructs one
instance (G*, k, {) of EDGE-WEIGHTED p-REC such that:

©Q (G*, k,0) is YEs iff one of the t instances of MAX CUT is YES, and
@ ¢ is polynomially bounded as a function of maxi<i<: |V(Gj)l.

@ We may safely assume that t is odd, that for each 1 </ < t we have
\V(G;)| =: nand p; =: p, and that 1 < p < n?.

23/30

|dea of the proof

Given (Gy, p), ..., (G, p), we create G* as follows:

Vi 14 Va Vs 1 Vi
R
[E— e B -
1
" ==l wkw{
wq wy
=, > . .
S1 52 wy!
1 //'\¥ :
1

o We define wy := 5n2 and w» := 5.
o And we set k := |V(G*)|/2 and (:= win® — wap + 4.

24/30

|dea of the proof

Given (Gy, p), ..., (G, p), we create G* as follows:

Vi 14 Va Vs 1 Vi
R
[E— e B -
1
" ==l wkw{
wq wy
=, > . .
S1 52 wy!
1 //'\¥ :
1

o We define wy := 5n2 and w» := 5.

o And we set k := |V(G*)|/2 and (:= win® — wap + 4.

@ k is not polynomially bounded in terms of n, but this is not a problem
since the parameter is £, which is bounded by 5n*.

@ This construction can be performed in polynomial time in t - n.

24/30

|dea of the proof

Given (Gy, p), ..., (G, p), we create G* as follows:

Vi Vi Vs V3 LV
R
[E— e B -
1
" ==l wkw{
wq wy
=, > . .
S1 52 wy!
1 44_*_,,»//"\\»»4— o :
1

o We define wy := 5n2 and w» := 5.

o And we set k := |V(G*)|/2 and (:= win® — wap + 4.

@ k is not polynomially bounded in terms of n, but this is not a problem
since the parameter is £, which is bounded by 5n*.

@ This construction can be performed in polynomial time in t - n.

(G*, k,0) is a YEs-instance of EDGE-WEIGHTED p-REC iff there

exists i € {1,...,t} such that (G;, p) is a YES-instance of Max CuT.
24/30

Considering the maximum degree as a parameter

Considering the A(G) as an extra parameter turns the problem easier?

25/30

Considering the maximum degree as a parameter

Considering the A(G) as an extra parameter turns the problem easier?

Determining whether a connected graph G is A\ -connected is
NP-complete when k is part of the input, even if A(G) < 5.

25/30

Considering the maximum degree as a parameter

Considering the A(G) as an extra parameter turns the problem easier?

Determining whether a connected graph G is A\ -connected is
NP-complete when k is part of the input, even if A(G) < 5.

The p-REC problem is FPT when parameterized by k and the maximum
degree A of the input graph.

Algorithm based on a simple exhaustive search + MIN CuT algorithm.

25/30

ldea of the NP-completeness reduction

@ Reduction from the 3-DIMENSIONAL MATCHING (3DM) problem:

Given aset W = RUBUY, where R, B, Y are disjoint sets with

|R| =|B| =1|Y|= m, and a set of triples T C R x B x Y, the question is
whether there exists a matching M C T covering W, i.e., |[M| = m and each
element of W = RU B U Y occurs in exactly one triple of M.

b y
e o o » o o o Flements W=RUBUY

T
L[] L] K L] L] L] L]

26/30

ldea of the NP-completeness reduction

@ Reduction from the 3-DIMENSIONAL MATCHING (3DM) problem:

Given aset W = RUBUY, where R, B, Y are disjoint sets with

|R| =|B| =1|Y|= m, and a set of triples T C R x B x Y, the question is
whether there exists a matching M C T covering W, i.e., |[M| = m and each
element of W = RU B U Y occurs in exactly one triple of M.

b y
® o o o o o o Flements W=RUBUY

T
L[] L] K L] L] L] L]

® o o o o o o W o o o o o o o TriplesT
(r,b,y)

@ 3DM is NP-complete even if each element of W appears in 2 or 3
tl’lp|eS Only [Dyer, Frieze '86]

26/30

ldea of the NP-completeness reduction

@ Reduction from the 3-DIMENSIONAL MATCHING (3DM) problem:

Given aset W = RUBUY, where R, B, Y are disjoint sets with

|R| =|B| =1|Y|= m, and a set of triples T C R x B x Y, the question is
whether there exists a matching M C T covering W, i.e., |[M| = m and each
element of W = RU B U Y occurs in exactly one triple of M.

b y
® o o o o o o Flements W=RUBUY

T
L[] L] K L] L] L] L]

® o o o o o o W o o o o o o o TriplesT
(r,b,y)

@ 3DM is NP-complete even if each element of W appears in 2 or 3
tl’lp|eS Only [Dyer, Frieze '86]

@ Our reduction is an appropriate modification of one given in [Dyer, Frieze '85]
26/30

|dea of the NP-completeness reduction (2)

Given an instance (W, T) of 3DM, we build a graph G with A(G) < 5:

. HEHTH D
Jl S - .

R SRR R RRREE S a N
Where np = 2m? and n, = 3m+ | T|)np +5m — | T| — 1.

27/30

|dea of the NP-completeness reduction (2)

Given an instance (W, T) of 3DM, we build a graph G with A(G) < 5:

SERESEESEEE NS

poe ‘/K\ /)\ W
riples

D b o o o o o b o o o o o 4T

SERERRRRERRRRE I

Where np = 2m? and n, = 3m+ | T|)np +5m — | T| — 1.
G contains two disjoint connected subgraphs of order n/2 <
T contains a matching covering W.

27/30

@ Further research

28/30

Conclusions and further research

Problem Classical Parameterized complexity with parameter
complexity k+e] k | ¢ Jk+A]l+A
Is G NPc, even
Ak-conn. ? if A <5 * FPT * FPT *
NPh, even FPT No poly
M(G) <7 if G is (known) | W[1]-hard | kernels | FPT ?
Ag-conn.

29/30

Conclusions and further research

Problem Classical Parameterized complexity with parameter
complexity k+e] k | ¢ Jk+A]l+A
Is G NPc, even
Ak-conn. ? if A <5 * FPT * FPT *
NPh, even FPT No poly
M(G)<? if Gis (known) | W[1]-hard | kernels | FPT ?
Ag-conn.

@ Main open question: is the problem FPT when parameterized by (7

29/30

Conclusions and further research

Problem Classical Parameterized complexity with parameter
complexity k+e] k | ¢ Jk+A]l+A
Is G NPc, even
Ak-conn. ? if A <5 * FPT * FPT *
NPh, even FPT No poly
M(G)<? if Gis (known) | W[1]-hard | kernels | FPT ?
Ag-conn.

@ Main open question: is the problem FPT when parameterized by (7

For MIN BISECTION, the non-existence of polynomial kernels was known

before the problem was recently proved to be FPT. [Cygan et al. "14]

29/30

Conclusions and further research

Problem Classical Parameterized complexity with parameter
complexity k+e] k | ¢ Jk+A]l+A
Is G NPc, even
Ak-conn. ? if A <5 * FPT * FPT *
NPh, even FPT No poly
M(G)<? if Gis (known) | W[1]-hard | kernels | FPT ?
Ag-conn.

@ Main open question: is the problem FPT when parameterized by (7
For MIN BISECTION, the non-existence of polynomial kernels was known
before the problem was recently proved to be FPT. [Cygan et al. "14]

@ We don’t know it even for the combined parameter ¢ + A.

Adding A as a parameter may not make things easier, as MIN BISECTION
is as hard in 3-regular graphs as in general graphs. [Berman, Karpinski "02]

29/30

Conclusions and further research

Problem Classical Parameterized complexity with parameter
complexity k+e] k | ¢ Jk+A]l+A
Is G NPc, even
Ak-conn. ? if A <5 * FPT * FPT *
NPh, even FPT No poly
M(G)<? if Gis (known) | W[1]-hard | kernels | FPT ?
Ag-conn.

@ Main open question: is the problem FPT when parameterized by (7
For MIN BISECTION, the non-existence of polynomial kernels was known
before the problem was recently proved to be FPT. [Cygan et al. "14]

@ We don’t know it even for the combined parameter ¢ + A.

Adding A as a parameter may not make things easier, as MIN BISECTION

is as hard in 3-regular graphs as in general graphs. [Berman, Karpinski '02]

@ Polynomial kernels with parameter k + ¢ 7
20/30

Gracies!

	Introduction
	Our results
	Ideas of some of the proofs
	Further research

