FPT algorithm for a generalized cut problem and some applications

EunJung Kim ${ }^{1}$ Sang-II Oum ${ }^{2}$
Christophe Paul ${ }^{3}$ Ignasi Sau ${ }^{3}$ Dimitrios M. Thilikos ${ }^{3}$

CIRM, Marseille, January 2015

${ }^{1}$ CNRS, LAMSADE, Paris (France)
${ }^{2}$ KAIST, Daejeon (South Korea)
${ }^{3}$ CNRS, LIRMM, Montpellier (France)

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

Many cut problems have been proved to be FPT

Cut problem given a graph, find a minimum (vertex or edge) cutset whose removal makes the graph satisfy some separation property.

- Min Cut: polynomial by classical max-flow min-cut theorem.
- Multiway Cut: FPT by using important separators.
- Multicut: Finally, FPT.
[Marx, Razgon + Bousquet, Daligault, Thomassé '10]
- Steiner Cut: Improved FPT algorithm by using randomized contractions.
[Chitnis, Cygan, Hajiaghayi, Pilipczuk ${ }^{2}$ '12]
- Min Bisection: Finally, FPT.
[Cygan, Lokshtanov, Pilipczuk ${ }^{2}$, Saurabh '13]

We introduce a new cut problem

- A new cut problem: List Allocation (to be defined in two slides).

Theorem

The List Allocation problem is FPT.

We introduce a new cut problem

- A new cut problem: List Allocation (to be defined in two slides).

Theorem

The List Allocation problem is FPT.

- List Allocation generalizes, in particular, Multiway Cut.
- General enough so that several other problems can be reduced to it:
* FPT algorithm for a parameterization of Digraph Homomorphism.
* FPT algorithm for the Min-Max Graph Partitioning problem.
* FPT 2-approximation for Tree-cut width.

Before defining the problem: allocations

- An r-allocation of a set S is an r-tuple $\mathcal{V}=\left(V_{1}, \ldots, V_{r}\right)$ of possibly empty pairwise disjoint subsets of S whose union is S.
- Elements of \mathcal{V} : parts of \mathcal{V}.
- We denote by $\mathcal{V}^{(i)}$ the i-th part of \mathcal{V}, i.e., $\mathcal{V}^{(i)}=V_{i}$.

Before defining the problem: allocations

- An r-allocation of a set S is an r-tuple $\mathcal{V}=\left(V_{1}, \ldots, V_{r}\right)$ of possibly empty pairwise disjoint subsets of S whose union is S.
- Elements of \mathcal{V} : parts of \mathcal{V}.
- We denote by $\mathcal{V}^{(i)}$ the i-th part of \mathcal{V}, i.e., $\mathcal{V}^{(i)}=V_{i}$.
- Let $G=(V, E)$ be a graph and let \mathcal{V} be an r-allocation of V : $\left|\delta\left(\mathcal{V}^{(i)}, \mathcal{V}^{(j)}\right)\right|$: \#edges in G with one endpoint in $\mathcal{V}^{(i)}$ and one in $\mathcal{V}^{(j)}$.

Definition of the problem: List Allocation

List Allocation

Input: A tuple $I=(G, r, \lambda, \alpha)$, where G is an n-vertex graph, $r \in \mathbb{Z}_{\geqslant 1}, \lambda: V(G) \rightarrow 2^{[r]}$, and $\alpha:\binom{[r]}{2} \rightarrow \mathbb{Z}_{\geqslant 0}$.

Definition of the problem: List Allocation

List Allocation

Input: A tuple $I=(G, r, \lambda, \alpha)$, where G is an n-vertex graph, $r \in \mathbb{Z}_{\geqslant 1}, \lambda: V(G) \rightarrow 2^{[r]}$, and $\alpha:\binom{[r]}{2} \rightarrow \mathbb{Z}_{\geqslant 0}$.
Parameter: $k=\sum \alpha$.

Definition of the problem: List Allocation

List Allocation

Input: A tuple $I=(G, r, \lambda, \alpha)$, where G is an n-vertex graph,
$r \in \mathbb{Z}_{\geqslant 1}, \lambda: V(G) \rightarrow 2^{[r]}$, and $\alpha:\binom{[r]}{2} \rightarrow \mathbb{Z}_{\geqslant 0}$.
Parameter: $k=\sum \alpha$.
Question: Decide whether there exists an r-allocation \mathcal{V} of $V(G)$ st.

- $\forall\{i, j\} \in\binom{[r]}{2},\left|\delta\left(\mathcal{V}^{(i)}, \mathcal{V}^{(j)}\right)\right|=\alpha(i, j)$ and
- $\forall v \in V(G)$, if $v \in \mathcal{V}^{(i)}$ then $i \in \lambda(v)$.

High-level ideas of the FPT algorithm

- Strongly inspired by the technique of randomized edge contraction.
[Chitnis, Cygan, Hajiaghayi, Pilipczuk ${ }^{2}$ '12]
- We use a series of FPT reductions:

Problem $A \xrightarrow{\text { FPT }}$ Problem B : If problem B is FPT, then problem A is FPT.

High-level ideas of the FPT algorithm

- Strongly inspired by the technique of randomized edge contraction.
[Chitnis, Cygan, Hajiaghayi, Pilipczuk ${ }^{2}$ '12]
- We use a series of FPT reductions:

Problem $A \xrightarrow{\text { FPT }}$ Problem B : If problem B is FPT, then problem A is FPT.

- At some steps, we obtain instances whose size is bounded by some function $f(k)$.
- Then we will use that the List Allocation problem is in XP:

Lemma

There exists an algorithm that, given an instance $I=(G, r, \lambda, \alpha)$ of List Allocation, computes all possible solutions in time $n^{O(k)} \cdot r^{O(k+\ell)}$, where ℓ is the number of connected components of G.

Some preliminaries

- Let G be a connected graph. A partition $\left(V_{1}, V_{2}\right)$ of $V(G)$ is a (q, k)-separation if $\left|V_{1}\right|,\left|V_{2}\right|>q,\left|\delta\left(V_{1}, V_{2}\right)\right| \leqslant k$, and $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are both connected.

- A graph G is (q, k)-connected if it does not contain any ($q, k-1$)-separation.

Some preliminaries

- Let G be a connected graph. A partition $\left(V_{1}, V_{2}\right)$ of $V(G)$ is a (q, k)-separation if $\left|V_{1}\right|,\left|V_{2}\right|>q,\left|\delta\left(V_{1}, V_{2}\right)\right| \leqslant k$, and $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are both connected.

- A graph G is (q, k)-connected if it does not contain any ($q, k-1$)-separation.

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk ${ }^{2}$ '12)

There exists an algorithm that given a n-vertex connected graph G and two integers q, k, either finds a (q, k)-separation, or reports that no such separation exists, in time $(q+k)^{O(\min \{q, k\})} n^{3} \log n$.

Series of FPT reductions

List Allocation (LA)

Series of FPT reductions

List Allocation (LA)
\downarrow FPT
Connected List Allocation (CLA)
Same input + graph G is connected and $r \leqslant 2 k$

Series of FPT reductions

List Allocation (LA)
\downarrow FPT
Connected List Allocation (CLA)
\downarrow FPT
Highly Connected List Allocation (HCLA)
Same input + graph G is $\left(f_{1}(k), k+1\right)$-connected, for $f_{1}(k):=2^{k} \cdot(2 k)^{2 k}$

Series of FPT reductions

List Allocation (LA)
\downarrow FPT
Connected List Allocation (CLA)
\downarrow FPT
Highly Connected List Allocation (HCLA)
Same input + graph G is $\left(f_{1}(k), k+1\right)$-connected, for $f_{1}(k):=2^{k} \cdot(2 k)^{2 k}$

Claim (Unique big part)

For any solution \mathcal{V} of HCLA there exists a unique index $j \in[r]$ such that

$$
\sum_{i \in[r] \backslash j}\left|\mathcal{V}^{(i)}\right| \leqslant k \cdot f_{1}(k) .
$$

- Part $\mathcal{V}^{(j)}$ is called the big part.

Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leqslant 2 k$ (start with $B=\emptyset$):

Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leqslant 2 k$ (start with $B=\emptyset$):
(1) If G has a $\left(f_{1}(k), k\right)$-separation $\left(V_{1}, V_{2}\right)$:
- W.l.o.g. let V_{1} be the part with the smallest number of boundary vertices, and let B^{\prime} be the new boundary: so $\left|B^{\prime}\right| \leqslant 2 k$.
- Call recursively shrink with input ($\left.G\left[V_{1}\right], B^{\prime}\right)$, and update the graph.

Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leqslant 2 k$ (start with $B=\emptyset$):
(1) If G has a $\left(f_{1}(k), k\right)$-separation $\left(V_{1}, V_{2}\right)$:
- W.l.o.g. let V_{1} be the part with the smallest number of boundary vertices, and let B^{\prime} be the new boundary: so $\left|B^{\prime}\right| \leqslant 2 k$.
- Call recursively shrink with input ($\left.G\left[V_{1}\right], B^{\prime}\right)$, and update the graph.
(2) Otherwise, find a set of "indistinguishable"' vertices, and identify them. Idea We generate all partial solutions in the boundary, and for each of them we compute a solution of HCLA, using our "black box".

Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leqslant 2 k$ (start with $B=\emptyset$):
(1) If G has a $\left(f_{1}(k), k\right)$-separation $\left(V_{1}, V_{2}\right)$:
- W.l.o.g. let V_{1} be the part with the smallest number of boundary vertices, and let B^{\prime} be the new boundary: so $\left|B^{\prime}\right| \leqslant 2 k$.
- Call recursively shrink with input ($\left.G\left[V_{1}\right], B^{\prime}\right)$, and update the graph.
(2) Otherwise, find a set of "indistinguishable"' vertices, and identify them.

Idea By the high connectivity (Claim), each such solution has a unique big part $\mathcal{V}^{(j)}$: indistinguishable vertices for this behavior.

Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leqslant 2 k$ (start with $B=\emptyset$):
(1) If G has a $\left(f_{1}(k), k\right)$-separation $\left(V_{1}, V_{2}\right)$:
- W.l.o.g. let V_{1} be the part with the smallest number of boundary vertices, and let B^{\prime} be the new boundary: so $\left|B^{\prime}\right| \leqslant 2 k$.
- Call recursively shrink with input ($\left.G\left[V_{1}\right], B^{\prime}\right)$, and update the graph.
(2) Otherwise, find a set of "indistinguishable"' vertices, and identify them.

Idea If the graph is big enough, there are vertices that are indistinguishable for all behaviors \Rightarrow identify them. Return the graph.

Reduction from CLA to HCLA: we shrink the graph

- We apply to G the following recursive algorithm shrink, which receives a graph G and a boundary set B with $|B| \leqslant 2 k$ (start with $B=\emptyset$):
(1) If G has a $\left(f_{1}(k), k\right)$-separation $\left(V_{1}, V_{2}\right)$:
- W.l.o.g. let V_{1} be the part with the smallest number of boundary vertices, and let B^{\prime} be the new boundary: so $\left|B^{\prime}\right| \leqslant 2 k$.
- Call recursively shrink with input ($\left.G\left[V_{1}\right], B^{\prime}\right)$, and update the graph.
(2) Otherwise, find a set of "indistinguishable"' vertices, and identify them. Idea If the graph is big enough, there are vertices that are indistinguishable for all behaviors \Rightarrow identify them. Return the graph.

Lemma

The above algorithm returns in FPT time an equivalent instance of CLA of size at most $f_{2}(k):=k \cdot\left(f_{1}(k)\right)^{2}+2 k+2$. (Then we apply the XP algorithm.)

Series of FPT reductions

List Allocation (LA)
\downarrow FPT
Connected List Allocation (CLA)
\downarrow FPT
Highly Connected List Allocation (HCLA)

Series of FPT reductions

Split Highly Connected List Allocation (SHCLA)

Same input + set $S \subseteq V(G)$ and a solution \mathcal{V} additionally needs to satisfy that if $j \in[r]$ is such that $\mathcal{V}^{(j)}$ is the big part of \mathcal{V}, then

$$
\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}
$$

Crucial ingredient: Splitter Lemma

- Splitters were first introduced by
- We use the following deterministic version:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk ${ }^{2}$ '12)

There exists an algorithm that given a set U of size n and two integers $a, b \in[0, n]$, outputs a set $\mathcal{F} \subseteq 2^{U}$ where $|\mathcal{F}|=(a+b)^{O(\min \{a, b\})} \cdot \log n$ such that for every two sets $A, B \subseteq U$, where $A \cap B=\emptyset,|A| \leqslant a,|B| \leqslant b$, there exists a set $S \in \mathcal{F}$ where $A \subseteq S$ and $B \cap S=\emptyset$, in $(a+b)^{O(\min \{a, b\})} \cdot n \log n$ steps.

Reduction from HCLA to SHCLA: we use splitters

- We use the Splitter Lemma with universe $U=V(G), a=k$, and $b=k \cdot f_{1}(k)$, obtaining a family \mathcal{F} of subsets of $V(G)$.

Reduction from HCLA to SHCLA: we use splitters

- We use the Splitter Lemma with universe $U=V(G), a=k$, and $b=k \cdot f_{1}(k)$, obtaining a family \mathcal{F} of subsets of $V(G)$.
- Idea We want a set $S \subseteq V(G)$ that "splits" these two sets:

$$
A=\partial \mathcal{V}^{(j)} \text { and } B=\bigcup_{i \in[r] \backslash\{j\}} \mathcal{V}^{(i)}
$$

For some $j \in[r]:|A| \leqslant k$ and $|B| \leqslant k \cdot f_{1}(k)$ (by the Claim).

Reduction from HCLA to SHCLA: we use splitters

- We use the Splitter Lemma with universe $U=V(G), a=k$, and $b=k \cdot f_{1}(k)$, obtaining a family \mathcal{F} of subsets of $V(G)$.
- Idea We want a set $S \subseteq V(G)$ that "splits" these two sets:

$$
A=\partial \mathcal{V}^{(j)} \text { and } B=\bigcup_{i \in[r] \backslash\{j\}} \mathcal{V}^{(i)}
$$

For some $j \in[r]:|A| \leqslant k$ and $|B| \leqslant k \cdot f_{1}(k)$ (by the Claim).

- It holds that I is a Yes-instance of HCLA if and only if for some $S \in \mathcal{F},(I, S)$ is a Yes-instance of SHCLA.

An algorithm to solve SHCLA

- Try all $j \in[r]$ so that $\mathcal{V}^{(j)}$ is the big part: assume $\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}$.

An algorithm to solve SHCLA

- Try all $j \in[r]$ so that $\mathcal{V}^{(j)}$ is the big part: assume $\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}$.
- Partition the connected components of $G \backslash S$ into 3 sets:
- \mathcal{Y} : those that cannot go entirely in $\mathcal{V}^{(j)}$.
- \mathcal{Z} : those that are $\operatorname{big}\left(>k \cdot f_{1}(k)\right)$ and that can go entirely in $\mathcal{V}^{(j)}$.
- \mathcal{W} : those that are small $\left(\leqslant k \cdot f_{1}(k)\right)$ and that can go entirely in $\mathcal{V}^{(j)}$.

An algorithm to solve SHCLA

- Try all $j \in[r]$ so that $\mathcal{V}^{(j)}$ is the big part: assume $\partial \mathcal{V}^{(j)} \subseteq S \subseteq \mathcal{V}^{(j)}$.
- Partition the connected components of $G \backslash S$ into 3 sets:
- \mathcal{Y} : those that cannot go entirely in $\mathcal{V}^{(j)}$.
- \mathcal{Z} : those that are $\operatorname{big}\left(>k \cdot f_{1}(k)\right)$ and that can go entirely in $\mathcal{V}^{(j)}$.
- \mathcal{W} : those that are small $\left(\leqslant k \cdot f_{1}(k)\right)$ and that can go entirely in $\mathcal{V}^{(j)}$.

Lemma

The SHCLA problem can be solved in time $2^{O\left(k^{2} \cdot \log k\right)} \cdot n$.

Piecing everything together

```
List Allocation (LA)
    FPT reduction
Connected List Allocation (CLA)
    \downarrow FPT reduction
Highly Connected List Allocation (HCLA)
    FPT reduction
Split Highly Connected List Allocation (SHCLA)
\downarrow \mp@code { F P T ~ a l g o r i t h m ~ t o ~ s o l v e ~ S H C L A }
```


Theorem

List Allocation can be solved in time $2^{O\left(k^{2} \log k\right)} \cdot n^{4} \cdot \log n$.

Parameterization of Digraph НомOMORPhism

Arc-Bounded List Digraph Homomorphism Input: Two digraphs G and H, a list $\lambda: V(G) \rightarrow 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of arcs in G mapped to each (non-loop) arc of H.
Parameter: $k=\sum \alpha$.
Question: Decide whether there exists a homomorphism from G to H respecting the constraints imposed by λ and α.

- It generalizes several homomorphism problems.

Parameterization of Digraph НомOMORPhism

Arc-Bounded List Digraph Homomorphism Input: Two digraphs G and H, a list $\lambda: V(G) \rightarrow 2^{V(H)}$ of allowed images for every vertex in G, and a function α prescribing the number of arcs in G mapped to each (non-loop) arc of H.
Parameter: $k=\sum \alpha$.
Question: Decide whether there exists a homomorphism from G to H respecting the constraints imposed by λ and α.

- It generalizes several homomorphism problems.

Corollary

The Arc-Bounded List Digraph Homomorphism problem is FPT.

Graph partitioning problem

Min-Max Graph Partitioning

 Input: An undirected graph $G, w, r \in \mathbb{Z}_{\geqslant 0}$, and $T \subseteq V(G)$ with $|T|=r$. Parameter: $k=w \cdot r$.Question: Decide whether there exists a partition $\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{r}\right\}$ of $V(G)$ s.t. $\max _{i \in[r]}\left|\delta\left(\mathcal{P}_{i}, V(G) \backslash \mathcal{P}_{i}\right)\right| \leqslant w$ and for every $i \in[r],\left|\mathcal{P}_{i} \cap T\right|=1$.

- Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz'11]
- The "Min-Sum" version is exactly the Multiway Cut problem. [Marx '06]

Graph partitioning problem

Min-Max Graph Partitioning

 Input: An undirected graph $G, w, r \in \mathbb{Z}_{\geqslant 0}$, and $T \subseteq V(G)$ with $|T|=r$. Parameter: $k=w \cdot r$.Question: Decide whether there exists a partition $\left\{\mathcal{P}_{1}, \ldots, \mathcal{P}_{r}\right\}$ of $V(G)$ s.t. $\max _{i \in[r]}\left|\delta\left(\mathcal{P}_{i}, V(G) \backslash \mathcal{P}_{i}\right)\right| \leqslant w$ and for every $i \in[r],\left|\mathcal{P}_{i} \cap T\right|=1$.

- Important in approximation. [Bansal, Feige, Krauthgamer, Makarychev, Nagarajan, Naor, Schwartz'11]
- The "Min-Sum" version is exactly the Multiway Cut problem. [Marx $\left.{ }^{\circ} 06\right]$

Corollary

The Min-Max Graph Partitioning problem is FPT.

2-approximation for TreE-CUT WIDTH

- Tree-cut width is a graph invariant fundamental in the structure of graphs not admitting a fixed graph as an immersion.
- Tree-cut decompositions are a variation of tree decompositions based on edge cuts instead of vertex cuts.
- Tree-cut width also has algorithmic applications.

2-approximation for Tree-cut width

- Tree-cut width is a graph invariant fundamental in the structure of graphs not admitting a fixed graph as an immersion.
- Tree-cut decompositions are a variation of tree decompositions based on edge cuts instead of vertex cuts.
- Tree-cut width also has algorithmic applications.

Corollary

There exists an algorithm that, given a graph G and a $k \in \mathbb{Z}_{\geqslant 0}$, in time $2^{O\left(k^{2} \cdot \log k\right)} \cdot n^{5} \cdot \log n$ either outputs a tree-cut decomposition of G with width at most $2 k$, or correctly reports that the tree-cut width of G is strictly larger than k.

Conclusions and further research

Theorem

List Allocation can be solved in time $2^{O\left(k^{2} \log k\right)} \cdot n^{4} \cdot \log n$.

Conclusions and further research

Theorem

List Allocation can be solved in time $2^{O\left(k^{2} \log k\right)} \cdot n^{4} \cdot \log n$.

Some further research:

- Improve the running time of our algorithms.
- Can we find more applications of List Allocation?
- Find an explicit (exact) FPT algorithm for tree-cut width.

Gràcies!

