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Introduction

WDM (Wavelength Division Multiplexing) networks
1 wavelength (or frequency) = up to 40 Gb/s
1 fiber = hundreds of wavelengths = Tb/s

Idea:
Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

−→ we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

Objectives:
Better use of bandwidth
Reduce the equipment cost (mostly given by electronics)
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ADM and OADM

OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber
ADM (Add/Drop Multiplexer)= insert/extract an OC/STM
(electric low-speed signal) to/from a wavelength

ADM ADM ADM

OADMOADM OADM

−→ we want to minimize the number of ADMs
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Definitions

Request (i , j): two vertices (i , j) that want to exchange
(low-speed) traffic

Grooming factor C:

C =
Capacity of a wavelength

Capacity used by a request

Example:

Capacity of one wavelength = 2400 Mb/s
Capacity used by a request = 600 Mb/s ⇒ C = 4

load of an arc in a wavelength:
number of requests using this arc in this wavelength (≤ C)
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Saving ADMs

Main idea: two lightpaths with the same endpoints can share an ADM.

1 65432
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Saving ADMs

Main idea: two lightpaths with the same endpoints can share an ADM.
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Model

Topology → (di)graph G
Request set → (di)graph R
Grooming factor → integer C
Requests in a wavelength → arcs in a subgraph of R
ADM in a wavelength → vertex in a subgraph of R

? Important case: G =
−→
C n, with symmetric requests

[J.-C. Bermond and D. Coudert. Traffic Grooming in Unidirectional
WDM Ring Networks using Design Theory. IEEE ICC, 2003]
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Unidirectional Ring with Symmetric Requests

Symmetric requests: we have both (i , j) and (j , i).

(i,j)

(j,i)

i
j

i
j

W.l.o.g. requests (i , j) and (j , i) are in the same subgraph
→ each pair of symmetric requests induces load 1
→ grooming factor C ⇔ each subgraph has ≤ C edges.

C-edge-partition of a graph G:
partition of E(G) into subgraphs with at most C edges each.

10



Unidirectional Ring with Symmetric Requests

Symmetric requests: we have both (i , j) and (j , i).

(i,j)

(j,i)

i
j

i
j

W.l.o.g. requests (i , j) and (j , i) are in the same subgraph
→ each pair of symmetric requests induces load 1
→ grooming factor C ⇔ each subgraph has ≤ C edges.

C-edge-partition of a graph G:
partition of E(G) into subgraphs with at most C edges each.

10



Unidirectional Ring with Symmetric Requests

Symmetric requests: we have both (i , j) and (j , i).

(i,j)

(j,i)

i
j

i
j

W.l.o.g. requests (i , j) and (j , i) are in the same subgraph
→ each pair of symmetric requests induces load 1
→ grooming factor C ⇔ each subgraph has ≤ C edges.

C-edge-partition of a graph G:
partition of E(G) into subgraphs with at most C edges each.

10



Unidirectional Ring with Symmetric Requests

Symmetric requests: we have both (i , j) and (j , i).

(i,j)

(j,i)

i
j

i
j

W.l.o.g. requests (i , j) and (j , i) are in the same subgraph
→ each pair of symmetric requests induces load 1
→ grooming factor C ⇔ each subgraph has ≤ C edges.

C-edge-partition of a graph G:
partition of E(G) into subgraphs with at most C edges each.

10



Unidirectional Ring with Symmetric Requests

Symmetric requests: we have both (i , j) and (j , i).

(i,j)

(j,i)

i
j

i
j

W.l.o.g. requests (i , j) and (j , i) are in the same subgraph
→ each pair of symmetric requests induces load 1
→ grooming factor C ⇔ each subgraph has ≤ C edges.

C-edge-partition of a graph G:
partition of E(G) into subgraphs with at most C edges each.

10



Statement of the problem in unidirectional rings

Traffic Grooming in Unidirectional Rings

Input A cycle Cn on n nodes (network);
An undirected graph R on n nodes (request set);
A grooming factor C.

Output A C-edge-partition of R into subgraphs R1, . . . ,RW .

Objective Minimize
∑W

ω=1 |V (Rω)|.
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Example (unidirectional ring with symmetric requests)

0 1

23

n = 4
R = K4
C = 3

12



Example (unidirectional ring with symmetric requests)

0 1

23

n = 4
R = K4
C = 3

0 1

23

0 1

23

12



Example (unidirectional ring with symmetric requests)

0 1

23

n = 4
R = K4
C = 3

0 1

23

0 1

23

8 ADMs

12



Example (unidirectional ring with symmetric requests)

0 1

23

n = 4
R = K4
C = 3

0 1

23

0 1

2

0 1

23

0 1

23

8 ADMs

7 ADMs

12



Next section is...

1 Motivation: traffic grooming

2 Jean-Claude’s contribution

3 The bidirectional ring
Preliminaries
Lower bounds
Upper bounds

13



Jean-Claude, the “traffic groomer”

[1] J.-C. Bermond and S. Ceroi. Minimizing SONET ADMs in unidirectional WDM rings with

grooming ratio 3. Networks, 2003.

[2] J.-C. Bermond, C. Colbourn, A. Ling, and M.-L. Yu. Grooming in unidirectional rings:

K4 − e designs. Discrete Mathematics, 2004.

[3] J.-C. Bermond, C. Colbourn, D. Coudert, G. Ge, A. Ling, and X. Muñoz. Traffic Grooming
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Case under study

We focus on the following particular case:

The topology is given by a bidirectional ring.

There is an all-to-all traffic.

The routing uses shortest paths.

The routing is symmetric
(makes sense only if the size of the ring is even).

? Simplification: we consider the requests clockwise and
counterclockwise independently.
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Statement of our problem

Traffic Grooming in Bidirectional Rings

Input • A unidirectional cycle ~Cn;
• A grooming factor C;
• A digraph of requests consisting
of a “clockwise” tournament Tn.

Output A partition of E(Tn) into digraphs Bω, 1 ≤ ω ≤W , such
that for each arc e ∈ E(~Cn), load(Bω,e) ≤ C.

Objective Minimize
∑W

ω=1 |V (Bω)| =: A(C,n).

18



Example: n = 5 and C = 2

Here we partition T5 in two ways, both using two wavelengths (colors):

�����

�����
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�����		



���

0

1

23

4

10 ADMS

0

1

23

4

9 ADMS
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Admissible digraphs

An embedded digraph Bω is C-admissible if load(Bω,e) ≤ C for each
arc e ∈ E(~Cn).
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The parameter γ(C,p)

Definition
γ(C,p) = max{|E(Bω)| : Bω C-admissible digraph with |V (Bω)| = p}.

Is γ(C,p) achieved using the requests of shortest length?

In the path, it is NOT the case! For instance, take p = 11 and C = 10:
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In bidirectional rings: the shorter, the better

Proposition

Let C = k(k+1)
2 + r , with 0 ≤ r ≤ k. Then

γ(C,p) =


p(p−1)

2 , if p ≤ 2k + 1, or p = 2k + 2 and r ≥ k+2
2

kp + 2r − 1 , if p = 2k + 2 and 1 ≤ r < k+2
2

kp +
⌊

rp
k+1

⌋
, otherwise

The graphs achieving γ(C,p) are either the tournament Tp if p is small
(namely, if p ≤ 2k + 1 or p = 2k + 2 and r ≥ k+2

2 ), or subgraphs of a
circulant digraph containing all the arcs of length 1,2, . . . , k, plus some
arcs of length k + 1 if r > 0.
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General lower bound

Definition

ρ(C) = max
p≥2

{
γ(C,p)

p

}
= k +

r
k + 1

.

Theorem (General lower bound)

Let C = k(k+1)
2 + r , with 0 ≤ r ≤ k. The number of ADMs required in a

bidirectional ring with n nodes and grooming factor C satisfies

A(C,n) ≥
⌈

n(n − 1)
2 · ρ(C)

⌉
=

⌈
n(n − 1)

2
k + 1

k(k + 1) + r

⌉
.
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Idea of proof: equations of the problem

Given a valid solution of the problem, let

ap: # of subgraphs of the partition with exactly p vertices;

A: total # of ADMs in the solution; and

W : # of subgraphs in the partition.

n∑
p=2

p · ap = A

W∑
w=1

|E(Vω)| = |E(Tn)| =
n(n − 1)

2

25
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Optimal constructions for C = 3

If C = 1 + . . .+ k , then ρ(C) = k + r
k+1 = k , so

A(C,n) ≥ n(n − 1)
2 · ρ(C)

=
n(n − 1)

2 · k
.

For C = 3, we have 3 = 1 + 2, so

A(3,n) ≥ n(n − 1)
4

.

Proposition
For n ≡ 1,5 (mod 12),

A(3,n) =
n(n − 1)

4
.
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A(3,n) =
n(n − 1)

4
.
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Sketch of proof

? Steiner triple system of order N: partition of E(KN) into K3’s.
They exist if and only if N ≡ 1,3 (mod 6).
Let N ≡ 1,3 (mod 6) and n = 2N − 1, with
◦ V (KN) = {∞,1, . . . ,N − 1}.
◦ V (Tn) = {∞,1A, . . . , (N − 1)A,1B, . . . , (N − 1)B} clockwise.

Consider a Steiner triple system for KN .
Then we transform each triangle as follows:

# of vertices: 5 ·
(

N−1
2

)
+ 6 ·

(
N(N−1)

6 − N−1
2

)
= n(n−1)

4 .
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Other optimal constructions

Theorem

If Kk×q can be partitioned into Kk+1’s, then there exists an optimal
admissible partition of T2kq+1 for C = k(k+1)

2 with n(n−1)
2·k ADMs.

Corollary

If C = 6 and n ≡ 1 or 7 (mod 24), A(6,n) = n(n−1)
6 .

If C = 10 and n ≡ 1 or 9 (mod 40), A(10,n) = n(n−1)
8 .

If C = 15 and n ≡ 1 or 11 (mod 30), A(15,n) = n(n−1)
10 .

If C = 21 and n ≡ 1 or 13 (mod 84), A(21,n) = n(n−1)
12 .

If C = 28 and n ≡ 1 or 15 (mod 112), A(28,n) = n(n−1)
14 .

If C = 36 and n ≡ 1 or 17 (mod 144), A(36,n) = n(n−1)
16 .
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Asymptotically optimal solutions

Simple necessary conditions for Kv to be edge-partitioned into
subgraphs isomorphic to a given graph H:

|E(H)| divides
(v

2

)
.

gcd{degree sequence of H} divides v − 1.

Theorem (Wilson’75)
For v large enough, the above necessary conditions are also sufficient.

Corollary

If C = k(k+1)
2 , then A(C,n) = n(n−1)

2·k for n ≡ 1 or 2k + 1 (mod 4C)
large enough.
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Merci, Jean-Claude !!

c© Frédéric Havet
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