# Traffic Grooming in Bidirectional WDM Rings 

Ignasi Sau

CNRS, LIRMM, Montpellier, France
Colloquim JCB, 31 mars 2011

## Outline

(1) Motivation: traffic grooming
(2) Jean-Claude's contribution
(3) The bidirectional ring

- Preliminaries
- Lower bounds
- Upper bounds


## Next section is...

(1) Motivation: traffic grooming

## (2) Jean-Claude's contribution

(3) The bidirectional ring

- Preliminaries
- Lower bounds
- Upper bounds


## Introduction

- WDM (Wavelength Division Multiplexing) networks
- 1 wavelength (or frequency) = up to $40 \mathrm{~Gb} / \mathrm{s}$
- 1 fiber $=$ hundreds of wavelengths $=\mathrm{Tb} / \mathrm{s}$
- Idea:

Traffic grooming consists in packing low-speed traffic flows into higher speed streams
$\longrightarrow$ we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

Objectives

- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)


## Introduction

- WDM (Wavelength Division Multiplexing) networks
- 1 wavelength (or frequency) = up to $40 \mathrm{~Gb} / \mathrm{s}$
- 1 fiber $=$ hundreds of wavelengths $=\mathrm{Tb} / \mathrm{s}$
- Idea:

Traffic grooming consists in packing low-speed traffic flows into higher speed streams
$\longrightarrow$ we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

- Objectives:
- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)


## Introduction

- WDM (Wavelength Division Multiplexing) networks
- 1 wavelength (or frequency) $=$ up to $40 \mathrm{~Gb} / \mathrm{s}$
- 1 fiber $=$ hundreds of wavelengths $=\mathrm{Tb} / \mathrm{s}$
- Idea:

Traffic grooming consists in packing low-speed traffic flows into higher speed streams
$\longrightarrow$ we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

- Objectives:
- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)


## ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength



## ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

$\longrightarrow$ we want to minimize the number of ADMs


## Definitions

- Request $(i, j)$ : two vertices $(i, j)$ that want to exchange (low-speed) traffic


## - Grooming factor C:

$$
C=\frac{\text { Capacity of a wavelength }}{\text { Capacity used by a request }}
$$

Example:
Cananity of one wavelength $=2400 \mathrm{Mb} / \mathrm{s}$ Capacity used by a request $=600 \mathrm{Mb} / \mathrm{s}$

## Definitions

- Request $(i, j)$ : two vertices $(i, j)$ that want to exchange (low-speed) traffic
- Grooming factor $C$ :

$$
C=\frac{\text { Capacity of a wavelength }}{\text { Capacity used by a request }}
$$

## Example:

Capacity of one wavelength $=2400 \mathrm{Mb} / \mathrm{s}$
Capacity used by a request $=600 \mathrm{Mb} / \mathrm{s}$
load of an arc in a wavelength:
number of requests using this arc in this wavelength ( $\leqslant C$ )

## Definitions

- Request $(i, j)$ : two vertices $(i, j)$ that want to exchange (low-speed) traffic
- Grooming factor $C$ :

$$
C=\frac{\text { Capacity of a wavelength }}{\text { Capacity used by a request }}
$$

Example:
Capacity of one wavelength $=2400 \mathrm{Mb} / \mathrm{s}$
Capacity used by a request $=600 \mathrm{Mb} / \mathrm{s} \quad \Rightarrow C=4$

- load of an arc in a wavelength:
number of requests using this arc in this wavelength ( $\leq C$ )


## Definitions

- Request $(i, j)$ : two vertices $(i, j)$ that want to exchange (low-speed) traffic
- Grooming factor $C$ :

$$
C=\frac{\text { Capacity of a wavelength }}{\text { Capacity used by a request }}
$$

Example:
Capacity of one wavelength $=2400 \mathrm{Mb} / \mathrm{s}$
Capacity used by a request $=600 \mathrm{Mb} / \mathrm{s} \quad \Rightarrow C=4$

- load of an arc in a wavelength:
number of requests using this arc in this wavelength $(\leq C)$


## ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

- We use an ADM only at the endpoints of a request (lightpath) in order to save as many ADMs as possible


## ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

- We use an ADM only at the endpoints of a request (lightpath) in order to save as many ADMs as possible


## Saving ADMs

Main idea: two lightpaths with the same endpoints can share an ADM.


## Saving ADMs

Main idea: two lightpaths with the same endpoints can share an ADM.


## Saving ADMs

Main idea: two lightpaths with the same endpoints can share an ADM.

## With no grooming



## Saving ADMs

Main idea: two lightpaths with the same endpoints can share an ADM.

With grooming, $\mathrm{C}=1$


## Saving ADMs

Main idea: two lightpaths with the same endpoints can share an ADM.

With grooming, $\mathrm{C}=1$


## Saving ADMs

Main idea: two lightpaths with the same endpoints can share an ADM.

With grooming, $\mathrm{C}=1$


## Saving ADMs

Main idea: two lightpaths with the same endpoints can share an ADM.

## With grooming, $\mathrm{C}=2$



## Model

Topology
Request set
Grooming factor
Requests in a wavelength
ADM in a wavelength
$\rightarrow$ (di)graph $G$
$\rightarrow$ (di)graph $R$
$\rightarrow$ integer $C$
$\rightarrow$ arcs in a subgraph of $R$
$\rightarrow$ vertex in a subgraph of $R$

Important case: $G=\vec{C}_{n}$, with symmetric requests

## Model

Topology
Request set
Grooming factor
Requests in a wavelength
ADM in a wavelength
$\rightarrow$ (di)graph $G$
$\rightarrow$ (di)graph $R$
$\rightarrow$ integer $C$
$\rightarrow$ arcs in a subgraph of $R$
$\rightarrow$ vertex in a subgraph of $R$

* Important case: $G=\vec{C}_{n}$, with symmetric requests
[J.-C. Bermond and D. Coudert. Traffic Grooming in Unidirectional
WDM Ring Networks using Design Theory. IEEE ICC, 2003]


## Unidirectional Ring with Symmetric Requests

- Symmetric requests: we have both $(i, j)$ and $(j, i)$.

- W.I.o.g. requests $(i, j)$ and $(j, i)$ are in the same subgraph $\rightarrow$ each pair of symmetric requests induces load 1


## Unidirectional Ring with Symmetric Requests

- Symmetric requests: we have both $(i, j)$ and $(j, i)$.

- W.l.o.g. requests $(i, j)$ and $(j, i)$ are in the same subgraph $\rightarrow$ each pair of symmetric requests induces load 1


## Unidirectional Ring with Symmetric Requests

- Symmetric requests: we have both $(i, j)$ and $(j, i)$.

- W.l.o.g. requests $(i, j)$ and $(j, i)$ are in the same subgraph $\rightarrow$ each pair of symmetric requests induces load 1



## Unidirectional Ring with Symmetric Requests

- Symmetric requests: we have both $(i, j)$ and $(j, i)$.

- W.l.o.g. requests $(i, j)$ and $(j, i)$ are in the same subgraph $\rightarrow$ each pair of symmetric requests induces load 1 $\rightarrow$ grooming factor $C \Leftrightarrow$ each subgraph has $\leq C$ edges.
- C-edge-partition of a graph G:


## Unidirectional Ring with Symmetric Requests

- Symmetric requests: we have both $(i, j)$ and $(j, i)$.

- W.l.o.g. requests $(i, j)$ and $(j, i)$ are in the same subgraph $\rightarrow$ each pair of symmetric requests induces load 1 $\rightarrow$ grooming factor $C \Leftrightarrow$ each subgraph has $\leq C$ edges.
- C-edge-partition of a graph $G$ :
partition of $E(G)$ into subgraphs with at most $C$ edges each.


## Statement of the problem in unidirectional rings

## Traffic Grooming in Unidirectional Rings

Input
A cycle $C_{n}$ on $n$ nodes (network);
An undirected graph $R$ on $n$ nodes (request set);
A grooming factor $C$.

Output A C-edge-partition of $R$ into subgraphs $R_{1}, \ldots, R_{W}$.

Objective Minimize $\sum_{\omega=1}^{W}\left|V\left(R_{\omega}\right)\right|$.

## Example (unidirectional ring with symmetric requests)

$$
\begin{aligned}
& n=4 \\
& R=K_{4} \\
& \mathrm{C}=3
\end{aligned}
$$

## Example (unidirectional ring with symmetric requests)



## Example (unidirectional ring with symmetric requests)



## Example (unidirectional ring with symmetric requests)



## Next section is...

(1) Motivation: traffic grooming
(2) Jean-Claude's contribution
(3) The bidirectional ring

- Preliminaries
- Lower bound's
- Upper bounds


## Jean-Claude, the "traffic groomer"

[1] J.-C. Bermond and S. Ceroi. Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 3. Networks, 2003.
[2] J.-C. Bermond, C. Colbourn, A. Ling, and M.-L. Yu. Grooming in unidirectional rings: $K_{4}-e$ designs. Discrete Mathematics, 2004.
[3] J.-C. Bermond, C. Colbourn, D. Coudert, G. Ge, A. Ling, and X. Muñoz. Traffic Grooming in Unidirectional WDM Rings With Grooming Ratio C=6. SIAM J. on Discr. Math., 2005.
[4] J.-C. Bermond and D. Coudert. Handbook of Combinatorial Designs, chapter VI.27: Grooming. Chapman \& Hall-CRC Press, 2006.
[5] J.-C. Bermond, L. Braud, and D. Coudert. Traffic Grooming on the Path. Theoretical Computer Science, 2007.
[6] J.-C. Bermond, D. Coudert, and B. Lévêque. Approximations for All-to-all Uniform Traffic Grooming on Unidirectional Ring. Journal of Interconnection Networks, 2008.
[7] J.-C. Bermond, C. Colbourn, L. Gionfriddo, G. Quattrocchi, and I. Sau. Drop Cost and Wavelength Optimal Two-Period Grooming with Ratio 4. SIAM J. on Discr. Math., 2010.
[8] J.-C. Bermond, X. Muñoz, and I. Sau. Traffic grooming in bidirectional WDM ring networks. Networks, 2010.

## Jean-Claude, the "traffic groomer"

[1] J.-C. Bermond and S. Ceroi. Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 3. Networks, 2003.
[2] J.-C. Bermond, C. Colbourn, A. Ling, and M.-L. Yu. Grooming in unidirectional rings: $K_{4}-e$ designs. Discrete Mathematics, 2004.
[3] J.-C. Bermond, C. Colbourn, D. Coudert, G. Ge, A. Ling, and X. Muñoz. Traffic Grooming in Unidirectional WDM Rings With Grooming Ratio C=6. SIAM J. on Discr. Math., 2005.
[4] J.-C. Bermond and D. Coudert. Handbook of Combinatorial Designs, chapter VI.27: Grooming. Chapman \& Hall-CRC Press, 2006.
[5] J.-C. Bermond, L. Braud, and D. Coudert. Traffic Grooming on the Path. Theoretical Computer Science, 2007.
[6] J.-C. Bermond, D. Coudert, and B. Lévêque. Approximations for All-to-all Uniform Traffic Grooming on Unidirectional Ring. Journal of Interconnection Networks, 2008.
[7] J.-C. Bermond, C. Colbourn, L. Gionfriddo, G. Quattrocchi, and I. Sau. Drop Cost and Wavelength Optimal Two-Period Grooming with Ratio 4. SIAM J. on Discr. Math., 2010. J.-C. Bermond, X. Muñoz, and I. Sau. Traffic grooming in bidirectional WDM ring networks. Networks, 2010.

## Next section is...

(1) Motivation: traffic grooming
(2) Jean-Claude's contribution
(3) The bidirectional ring

- Preliminaries
- Lower bounds
- Upper bounds


## Next subsection is...

(1) Motivation: traffic grooming
(2) Jean-Claude's contribution
(3) The bidirectional ring

- Preliminaries
- Lower bounds
- Upper bounds


## Case under study

We focus on the following particular case:

- The topology is given by a bidirectional ring.
- There is an all-to-all traffic.
- The routing uses shortest paths.


## Case under study

We focus on the following particular case:

- The topology is given by a bidirectional ring.
- There is an all-to-all traffic.
- The routing uses shortest paths.
- The routing is symmetric
(makes sense only if the size of the ring is even).


## Case under study

We focus on the following particular case:

- The topology is given by a bidirectional ring.
- There is an all-to-all traffic.
- The routing uses shortest paths.
- The routing is symmetric
(makes sense only if the size of the ring is even).

Simplification: we consider the requests clockwise and
counterclockwise independently.

## Case under study

We focus on the following particular case:

- The topology is given by a bidirectional ring.
- There is an all-to-all traffic.
- The routing uses shortest paths.
- The routing is symmetric (makes sense only if the size of the ring is even).

Simplification: we consider the requests clockwise and counterclockwise independently.

## Case under study

We focus on the following particular case:

- The topology is given by a bidirectional ring.
- There is an all-to-all traffic.
- The routing uses shortest paths.
- The routing is symmetric (makes sense only if the size of the ring is even).
* Simplification: we consider the requests clockwise and counterclockwise independently.


## Statement of our problem

## Traffic Grooming in Bidirectional Rings

Input

- A unidirectional cycle $\vec{C}_{n}$;
- A grooming factor $C$;
- A digraph of requests consisting
of a "clockwise" tournament $T_{n}$.

Output A partition of $E\left(T_{n}\right)$ into digraphs $B_{\omega}, 1 \leq \omega \leq W$, such that for each arc $e \in E\left(\vec{C}_{n}\right), \operatorname{load}\left(B_{\omega}, e\right) \leq C$.

Objective Minimize $\sum_{\omega=1}^{W}\left|V\left(B_{\omega}\right)\right|=: A(C, n)$.

## Example: $n=5$ and $C=2$

Here we partition $T_{5}$ in two ways, both using two wavelengths (colors):


## Next subsection is...

(1) Motivation: traffic grooming
(2) Jean-Claude's contribution
(3) The bidirectional ring

- Preliminaries
- Lower bounds
- Upper bounds


## Admissible digraphs

An embedded digraph $B_{\omega}$ is $C$-admissible if $\operatorname{load}\left(B_{\omega}, e\right) \leq C$ for each $\operatorname{arc} e \in E\left(\vec{C}_{n}\right)$.

## Admissible digraphs

An embedded digraph $B_{\omega}$ is $C$-admissible if $\operatorname{load}\left(B_{\omega}, e\right) \leq C$ for each $\operatorname{arc} e \in E\left(\vec{C}_{n}\right)$.

(a)
(a) A (non-embedded) digraph $B_{\omega}^{4}$.

## Admissible digraphs

An embedded digraph $B_{\omega}$ is $C$-admissible if $\operatorname{load}\left(B_{\omega}, e\right) \leq C$ for each $\operatorname{arc} e \in E\left(\vec{C}_{n}\right)$.

(a)

(b)
(a) A (non-embedded) digraph $B_{\omega}^{4}$.
(b) An embedded digraph $B_{\omega}$, which is 2-admissible.

## Admissible digraphs

An embedded digraph $B_{\omega}$ is $C$-admissible if $\operatorname{load}\left(B_{\omega}, e\right) \leq C$ for each $\operatorname{arc} e \in E\left(\vec{C}_{n}\right)$.

(a)

(b)

(c)
(a) A (non-embedded) digraph $B_{\omega}^{4}$.
(b) An embedded digraph $B_{\omega}$, which is 2-admissible.
(c) An embedded digraph $B_{\omega}^{\prime}$, which is NOT 2-admissible.

## The parameter $\gamma(C, p)$

## Definition

$\gamma(C, p)=\max \left\{\left|E\left(B_{\omega}\right)\right|: B_{\omega} C\right.$-admissible digraph with $\left.\left|V\left(B_{\omega}\right)\right|=p\right\}$.
Is $\gamma(C, p)$ achieved using the requests of shortest length?

## The parameter $\gamma(C, p)$

## Definition

$\gamma(C, p)=\max \left\{\left|E\left(B_{\omega}\right)\right|: B_{\omega} C\right.$-admissible digraph with $\left.\left|V\left(B_{\omega}\right)\right|=p\right\}$.
Is $\gamma(C, p)$ achieved using the requests of shortest length?
In the path, it is NOT the case! For instance, take $p=11$ and $C=10$ :

## The parameter $\gamma(C, p)$

## Definition

$\gamma(C, p)=\max \left\{\left|E\left(B_{\omega}\right)\right|: B_{\omega} C\right.$-admissible digraph with $\left.\left|V\left(B_{\omega}\right)\right|=p\right\}$.
Is $\gamma(C, p)$ achieved using the requests of shortest length? In the path, it is NOT the case! For instance, take $p=11$ and $C=10$ :

34 requests


## The parameter $\gamma(C, p)$

## Definition

$\gamma(C, p)=\max \left\{\left|E\left(B_{\omega}\right)\right|: B_{\omega} C\right.$-admissible digraph with $\left.\left|V\left(B_{\omega}\right)\right|=p\right\}$.
Is $\gamma(C, p)$ achieved using the requests of shortest length?
In the path, it is NOT the case! For instance, take $p=11$ and $C=10$ :


## In bidirectional rings: the shorter, the better

## Proposition

Let $C=\frac{k(k+1)}{2}+r$, with $0 \leq r \leq k$. Then
$\left\{\frac{p(p-1)}{2} \quad\right.$, if $p \leq 2 k+1$, or $p=2 k+2$ and $r \geq \frac{k+2}{2}$
$\gamma(C, p)= \begin{cases}k p+2 r-1 & , \text { if } p=2 k+2 \text { and } 1 \leq r<\frac{k+2}{2} \\ k p+\left\lfloor\frac{r p}{k+1}\right\rfloor & , \text { otherwise }\end{cases}$
The graphs achieving $\gamma(C, p)$ are either the tournament $T_{p}$ if $p$ is small (namely, if $p \leq 2 k+1$ or $p=2 k+2$ and $r \geq \frac{k+2}{2}$ ), or subgraphs of a circulant digraph containing all the arcs of length $1,2, \ldots, k$, plus some arcs of length $k+1$ if $r>0$.

## General lower bound

## Definition

$$
\rho(C)=\max _{p \geq 2}\left\{\frac{\gamma(C, p)}{p}\right\}
$$

## Theorem (General lower bound)

bidirectional ring with $n$ nodes and grooming factor $C$ satisfies


## General lower bound

## Definition

$$
\rho(C)=\max _{p \geq 2}\left\{\frac{\gamma(C, p)}{p}\right\}=k+\frac{r}{k+1} .
$$

## Theorem (General lower bound)

Let $C=\frac{k(k+1)}{2}+r$, with $0 \leq r \leq k$. The number of ADMs required in a bidirectional ring with $n$ nodes and grooming factor $C$ satisfies

$$
A(C, n) \geq\left\lceil\frac{n(n-1)}{2 \cdot \rho(C)}\right\rceil=\left\lceil\frac{n(n-1)}{2} \frac{k+1}{k(k+1)+r}\right\rceil
$$

## General lower bound

## Definition

$$
\rho(C)=\max _{p \geq 2}\left\{\frac{\gamma(C, p)}{p}\right\}=k+\frac{r}{k+1} .
$$

## Theorem (General lower bound)

Let $C=\frac{k(k+1)}{2}+r$, with $0 \leq r \leq k$. The number of ADMs required in a bidirectional ring with $n$ nodes and grooming factor $C$ satisfies

$$
A(C, n) \geq\left\lceil\frac{n(n-1)}{2 \cdot \rho(C)}\right\rceil
$$

## General lower bound

## Definition

$$
\rho(C)=\max _{p \geq 2}\left\{\frac{\gamma(C, p)}{p}\right\}=k+\frac{r}{k+1} .
$$

## Theorem (General lower bound)

Let $C=\frac{k(k+1)}{2}+r$, with $0 \leq r \leq k$. The number of ADMs required in a bidirectional ring with $n$ nodes and grooming factor $C$ satisfies

$$
A(C, n) \geq\left\lceil\frac{n(n-1)}{2 \cdot \rho(C)}\right\rceil=\left\lceil\frac{n(n-1)}{2} \frac{k+1}{k(k+1)+r}\right\rceil .
$$

## Idea of proof: equations of the problem

Given a valid solution of the problem, let

- $a_{p}$ : \# of subgraphs of the partition with exactly $p$ vertices;
- A: total \# of ADMs in the solution; and
- W: \# of subgraphs in the partition.



## Idea of proof: equations of the problem

Given a valid solution of the problem, let

- $a_{p}$ : \# of subgraphs of the partition with exactly $p$ vertices;
- A: total \# of ADMs in the solution; and
- W: \# of subgraphs in the partition.

$$
\begin{gathered}
\sum_{p=2}^{n} p \cdot a_{p}=A \\
\sum_{w=1}^{W}\left|E\left(V_{\omega}\right)\right|=\left|E\left(T_{n}\right)\right|=\frac{n(n-1)}{2}
\end{gathered}
$$

## Idea of proof: equations of the problem

Given a valid solution of the problem, let

- $a_{p}$ : \# of subgraphs of the partition with exactly $p$ vertices;
- A: total \# of ADMs in the solution; and
- W: \# of subgraphs in the partition.

$$
\begin{gathered}
\sum_{p=2}^{n} p \cdot a_{p}=A \\
\sum_{w=1}^{W}\left|E\left(V_{\omega}\right)\right|=\frac{n(n-1)}{2}
\end{gathered}
$$

## Idea of proof: equations of the problem

Given a valid solution of the problem, let

- $a_{p}$ : \# of subgraphs of the partition with exactly $p$ vertices;
- A: total \# of ADMs in the solution; and
- W: \# of subgraphs in the partition.

$$
\begin{gathered}
\sum_{p=2}^{n} p \cdot a_{p}=A \\
\sum_{p=2}^{N} a_{p} \cdot \gamma(C, p) \geq \sum_{w=1}^{W}\left|E\left(V_{w}\right)\right|=\frac{n(n-1)}{2}
\end{gathered}
$$

## Idea of proof: equations of the problem

Given a valid solution of the problem, let

- $a_{p}$ : \# of subgraphs of the partition with exactly $p$ vertices;
- A: total \# of ADMs in the solution; and
- W: \# of subgraphs in the partition.

$$
\begin{gathered}
\sum_{p=2}^{n} p \cdot a_{p}=A \\
\sum_{p=2}^{N} a_{p} \cdot \gamma(C, p) \geq \frac{n(n-1)}{2}
\end{gathered}
$$

## Idea of proof: equations of the problem

Given a valid solution of the problem, let

- $a_{p}$ : \# of subgraphs of the partition with exactly $p$ vertices;
- A: total \# of ADMs in the solution; and
- W: \# of subgraphs in the partition.

$$
\begin{gathered}
\sum_{p=2}^{n} p \cdot a_{p}=A \\
\sum_{p=2}^{n} a_{p} \cdot p \cdot \rho(C) \geq \sum_{p=2}^{N} a_{p} \cdot \gamma(C, p) \geq \frac{n(n-1)}{2}
\end{gathered}
$$

## Idea of proof: equations of the problem

Given a valid solution of the problem, let

- $a_{p}$ : \# of subgraphs of the partition with exactly $p$ vertices;
- A: total \# of ADMs in the solution; and
- W: \# of subgraphs in the partition.

$$
\begin{gathered}
\sum_{p=2}^{n} p \cdot a_{p}=A \\
\sum_{p=2}^{n} a_{p} \cdot p \cdot \rho(C) \geq \frac{n(n-1)}{2}
\end{gathered}
$$

## Idea of proof: equations of the problem

Given a valid solution of the problem, let

- $a_{p}$ : \# of subgraphs of the partition with exactly $p$ vertices;
- A: total \# of ADMs in the solution; and
- W: \# of subgraphs in the partition.

$$
\begin{gathered}
\sum_{p=2}^{n} p \cdot a_{p}=A \\
\rho(C) \cdot A=\sum_{p=2}^{n} a_{p} \cdot p \cdot \rho(C) \geq \frac{n(n-1)}{2}
\end{gathered}
$$

## Idea of proof: equations of the problem

Given a valid solution of the problem, let

- $a_{p}$ : \# of subgraphs of the partition with exactly $p$ vertices;
- A: total \# of ADMs in the solution; and
- W: \# of subgraphs in the partition.

$$
\begin{gathered}
\sum_{p=2}^{n} p \cdot a_{p}=A \\
\rho(C) \cdot A \geq \frac{n(n-1)}{2}
\end{gathered}
$$

## Idea of proof: equations of the problem

Given a valid solution of the problem, let

- $a_{p}$ : \# of subgraphs of the partition with exactly $p$ vertices;
- A: total \# of ADMs in the solution; and
- W: \# of subgraphs in the partition.

$$
\begin{aligned}
& \sum_{p=2}^{n} p \cdot a_{p}=A \\
& A \geq \frac{n(n-1)}{2 \cdot \rho(C)}
\end{aligned}
$$

## Next subsection is...

(1) Motivation: traffic grooming
(2) Jean-Claude's contribution
(3) The bidirectional ring

- Preliminaries
- Lower bounds
- Upper bounds


## Optimal constructions for $C=3$

- If $C=1+\ldots+k$, then $\rho(C)=k+\frac{r}{k+1}=k$, so

$$
A(C, n) \geq \frac{n(n-1)}{2 \cdot \rho(C)}=\frac{n(n-1)}{2 \cdot k}
$$

- For $C=3$, we have $3=1+2$, so


## Optimal constructions for $C=3$

- If $C=1+\ldots+k$, then $\rho(C)=k+\frac{r}{k+1}=k$, so

$$
A(C, n) \geq \frac{n(n-1)}{2 \cdot \rho(C)}=\frac{n(n-1)}{2 \cdot k}
$$

- For $C=3$, we have $3=1+2$, so

$$
A(3, n) \geq \frac{n(n-1)}{4}
$$

## Proposition

For $n \equiv 1.5(\bmod 12)$,

## Optimal constructions for $C=3$

- If $C=1+\ldots+k$, then $\rho(C)=k+\frac{r}{k+1}=k$, so

$$
A(C, n) \geq \frac{n(n-1)}{2 \cdot \rho(C)}=\frac{n(n-1)}{2 \cdot k}
$$

- For $C=3$, we have $3=1+2$, so

$$
A(3, n) \geq \frac{n(n-1)}{4}
$$

## Proposition

For $n \equiv 1,5(\bmod 12)$,

$$
A(3, n)=\frac{n(n-1)}{4}
$$

## Sketch of proof

* Steiner triple system of order $N$ : partition of $E\left(K_{N}\right)$ into $K_{3}$ 's.
- They exist if and only if $N \equiv 1,3(\bmod 6)$.
- Let $N \equiv 1,3(\bmod 6)$ and $n=2 N-1$


## Sketch of proof

* Steiner triple system of order $N$ : partition of $E\left(K_{N}\right)$ into $K_{3}$ 's.
- They exist if and only if $N \equiv 1,3(\bmod 6)$.
- Let $N \equiv 1,3(\bmod 6)$ and $n=2 N-1$, with


## Sketch of proof

* Steiner triple system of order $N$ : partition of $E\left(K_{N}\right)$ into $K_{3}$ 's.
- They exist if and only if $N \equiv 1,3(\bmod 6)$.
- Let $N \equiv 1,3(\bmod 6)$ and $n=2 N-1$,

$$
V\left(T_{n}\right)=\left\{\infty, 1_{A}, \ldots,(N-1)_{A}, 1_{B}, \ldots,(N-1)_{B}\right\} \text { clockwise. }
$$

## Sketch of proof

* Steiner triple system of order $N$ : partition of $E\left(K_{N}\right)$ into $K_{3}$ 's.
- They exist if and only if $N \equiv 1,3(\bmod 6)$.
- Let $N \equiv 1,3(\bmod 6)$ and $n=2 N-1$, with
- $V\left(K_{N}\right)=\{\infty, 1, \ldots, N-1\}$.
- $V\left(T_{n}\right)=\left\{\infty, 1_{A}, \ldots,(N-1)_{A}, 1_{B}, \ldots,(N-1)_{B}\right\}$ clockwise.
- Consider a Steiner triple system for $K_{N}$.
- Then we transform each triangle as follows:


## Sketch of proof

* Steiner triple system of order $N$ : partition of $E\left(K_{N}\right)$ into $K_{3}$ 's.
- They exist if and only if $N \equiv 1,3(\bmod 6)$.
- Let $N \equiv 1,3(\bmod 6)$ and $n=2 N-1$, with
- $V\left(K_{N}\right)=\{\infty, 1, \ldots, N-1\}$.
- $V\left(T_{n}\right)=\left\{\infty, 1_{A}, \ldots,(N-1)_{A}, 1_{B}, \ldots,(N-1)_{B}\right\}$ clockwise.
- Consider a Steiner triple system for $K_{N}$.
- Then we transform each triangle as follows:


## Sketch of proof

* Steiner triple system of order $N$ : partition of $E\left(K_{N}\right)$ into $K_{3}$ 's.
- They exist if and only if $N \equiv 1,3(\bmod 6)$.
- Let $N \equiv 1,3(\bmod 6)$ and $n=2 N-1$, with
- $V\left(K_{N}\right)=\{\infty, 1, \ldots, N-1\}$.
- $V\left(T_{n}\right)=\left\{\infty, 1_{A}, \ldots,(N-1)_{A}, 1_{B}, \ldots,(N-1)_{B}\right\}$ clockwise.
- Consider a Steiner triple system for $K_{N}$.
- Then we transform each triangle as follows:



## Sketch of proof

$\star$ Steiner triple system of order $N$ : partition of $E\left(K_{N}\right)$ into $K_{3}$ 's.

- They exist if and only if $N \equiv 1,3(\bmod 6)$.
- Let $N \equiv 1,3(\bmod 6)$ and $n=2 N-1$, with
- $V\left(K_{N}\right)=\{\infty, 1, \ldots, N-1\}$.
- $V\left(T_{n}\right)=\left\{\infty, 1_{A}, \ldots,(N-1)_{A}, 1_{B}, \ldots,(N-1)_{B}\right\}$ clockwise.
- Consider a Steiner triple system for $K_{N}$.
- Then we transform each triangle as follows:

- \# of vertices: $5 \cdot\left(\frac{N-1}{2}\right)+6 \cdot\left(\frac{N(N-1)}{6}-\frac{N-1}{2}\right)$


## Sketch of proof

$\star$ Steiner triple system of order $N$ : partition of $E\left(K_{N}\right)$ into $K_{3}$ 's.

- They exist if and only if $N \equiv 1,3(\bmod 6)$.
- Let $N \equiv 1,3(\bmod 6)$ and $n=2 N-1$, with
- $V\left(K_{N}\right)=\{\infty, 1, \ldots, N-1\}$.
- $V\left(T_{n}\right)=\left\{\infty, 1_{A}, \ldots,(N-1)_{A}, 1_{B}, \ldots,(N-1)_{B}\right\}$ clockwise.
- Consider a Steiner triple system for $K_{N}$.
- Then we transform each triangle as follows:

- \# of vertices: $5 \cdot\left(\frac{N-1}{2}\right)+6 \cdot\left(\frac{N(N-1)}{6}-\frac{N-1}{2}\right)=\frac{n(n-1)}{4}$.


## Other optimal constructions

## Theorem

If $K_{k \times q}$ can be partitioned into $K_{k+1}$ 's, then there exists an optimal admissible partition of $T_{2 k q+1}$ for $C=\frac{k(k+1)}{2}$ with $\frac{n(n-1)}{2 \cdot k}$ ADMs.


## Other optimal constructions

## Theorem

If $K_{k \times q}$ can be partitioned into $K_{k+1}$ 's, then there exists an optimal admissible partition of $T_{2 k q+1}$ for $C=\frac{k(k+1)}{2}$ with $\frac{n(n-1)}{2 \cdot k}$ ADMs.

## Corollary

If $C=6$ and $n \equiv 1$ or $7(\bmod 24), A(6, n)=\frac{n(n-1)}{6}$.
If $C=10$ and $n \equiv 1$ or $9(\bmod 40), A(10, n)=\frac{n(n-1)}{8}$.
If $C=15$ and $n \equiv 1$ or $11(\bmod 30), A(15, n)=\frac{n(n-1)}{10}$.
If $C=21$ and $n \equiv 1$ or $13(\bmod 84), A(21, n)=\frac{n(n-1)}{12}$.
If $C=28$ and $n \equiv 1$ or $15(\bmod 112), A(28, n)=\frac{n(n-1)}{14}$.
If $C=36$ and $n \equiv 1$ or $17(\bmod 144), A(36, n)=\frac{n(n-1)}{16}$.

## Asymptotically optimal solutions

Simple necessary conditions for $K_{V}$ to be edge-partitioned into subgraphs isomorphic to a given graph $H$ :

- $|E(H)|$ divides $\binom{n}{2}$.
- $\operatorname{gcd}\{$ degree sequence of $H$ \} divides $v-1$


## Asymptotically optimal solutions

Simple necessary conditions for $K_{V}$ to be edge-partitioned into subgraphs isomorphic to a given graph $H$ :

- $|E(H)|$ divides $\binom{v}{2}$.
- $\operatorname{gcd}\{$ degree sequence of $H\}$ divides $v-1$.


## Theorem (Wilson'75) <br> For v large enough, the above necessary conditions are also sufficient.

## Asymptotically optimal solutions

Simple necessary conditions for $K_{V}$ to be edge-partitioned into subgraphs isomorphic to a given graph $H$ :

- $|E(H)|$ divides $\binom{v}{2}$.
- gcd\{degree sequence of $H\}$ divides $v-1$.


## Theorem (Wilson'75)

For v large enough, the above necessary conditions are also sufficient.

## Corollary

 then $A(C, n)=\frac{n(n-1)}{2 \cdot k}$ for $n \equiv 1$ or $2 k+1(\bmod 4 C)$
## Asymptotically optimal solutions

Simple necessary conditions for $K_{V}$ to be edge-partitioned into subgraphs isomorphic to a given graph $H$ :

- $|E(H)|$ divides $\binom{v}{2}$.
- gcd\{degree sequence of $H\}$ divides $v-1$.


## Theorem (Wilson'75)

For v large enough, the above necessary conditions are also sufficient.

## Corollary

If $C=\frac{k(k+1)}{2}$, then $A(C, n)=\frac{n(n-1)}{2 \cdot k}$ for $n \equiv 1$ or $2 k+1(\bmod 4 C)$ large enough.

## Merci, Jean-Claude !!

© Frédéric Havet


