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Introduction

@ WDM (Wavelength Division Multiplexing) networks
e 1 wavelength (or frequency) = up to 40 Gb/s
e 1 fiber = hundreds of wavelengths = Tb/s
@ Idea:
Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

— we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

@ Objectives:

o Better use of bandwidth
o Reduce the equipment cost (mostly given by electronics)
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— we want to minimize the number of ADMs
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@ Request (/,)): two vertices (/,j) that want to exchange
(low-speed) traffic

@ Grooming factor C:

_ Capacity of a wavelength
~ Capacity used by a request

Example:
Capacity of one wavelength = 2400 Mb/s
Capacity used by a request = 600 Mb/s = C=4

@ |oad of an arc in a wavelength:
number of requests using this arc in this wavelength (< C)



ADM and OADM

@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber

@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric
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ADM and OADM

@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber

@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric
low-speed signal) to/from a wavelength
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@ We use an ADM only at the endpoints of a request (lightpath) in
order to save as many ADMs as possible



Saving ADMs

Main idea: two lightpaths with the same endpoints can share an ADM.
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Main idea: two lightpaths with the same endpoints can share an ADM.
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Saving ADMs

Main idea: two lightpaths with the same endpoints can share an ADM.

With grooming, C=2
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Requests in a wavelength
ADM in a wavelength

arcs in a subgraph of R
vertex in a subgraph of R

A



Topology (di)graph G
Request set (di)graph R
Grooming factor integer C

Requests in a wavelength
ADM in a wavelength

arcs in a subgraph of R
vertex in a subgraph of R

A

* Important case: G = 8,7, with symmetric requests

[J.-C. Bermond and D. Coudert. Traffic Grooming in Unidirectional
WDM Ring Networks using Design Theory. IEEE ICC, 2003]
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(i)
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@ Symmetric requests: we have both (/,j) and (j, /).
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@ W.lLo.g. requests (/,j) and (J, i) are in the same subgraph
— each pair of symmetric requests induces load 1
— grooming factor C < each subgraph has < C edges.



Unidirectional Ring with Symmetric Requests

@ Symmetric requests: we have both (/,j) and (j, /).
(i)

@ W.lLo.g. requests (/,j) and (J, i) are in the same subgraph
— each pair of symmetric requests induces load 1
— grooming factor C < each subgraph has < C edges.

@ C-edge-partition of a graph G:
partition of E(G) into subgraphs with at most C edges each.



Statement of the problem in unidirectional rings

Traffic Grooming in Unidirectional Rings

Input A cycle C, on n nodes (network);
An undirected graph R on n nodes (request set);
A grooming factor C.

Output A C-edge-partition of R into subgraphs R, ..., Ry.

Objective Minimize SV, |V(R.)|.

w=1




Example (unidirectional ring with symmetric requests)
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Example (unidirectional ring with symmetric requests)

0 1 0 1
. - / D< 8ADMS
n=4 :I
3 2 3 2



Example (unidirectional ring with symmetric requests
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Case under study

We focus on the following particular case:

@ The topology is given by a bidirectional ring.
@ There is an all-to-all traffic.
@ The routing uses shortest paths.

@ The routing is symmetric
(makes sense only if the size of the ring is even).

* Simplification: we consider the requests clockwise and
counterclockwise independently.



Statement of our problem

Traffic Grooming in Bidirectional Rings

Input ¢ A unidirectional cycle 5,7;
e A grooming factor C;
e A digraph of requests consisting
of a “clockwise” tournament 7.

Output A partition of E(T,) into digraphs B,,, 1 < w < W, such
that for each arc e € E(Cy), load(B,,. e) < C.

Objective Minimize >V, |V(B,)| =: A(C,n).




Example: n=5and C =2

Here we partition Ts in two ways, both using two wavelengths (colors):

10 ADMS
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Admissible digraphs

An embedded digraph B, is C-admissible if load(B,, e) < C for each
arc e € E(Cy).
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(a) A (non-embedded) digraph B?.
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Admissible digraphs

An embedded digraph B, is C-admissible if load(B,, e) < C for each
arc e € E(Cy).

0

2
@

(a) A (non-embedded) digraph B®.
(b) An embedded digraph B,,, which is 2-admissible.
(c) An embedded digraph B/,, which is NOT 2-admissible.
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The parameter v(C, p)

Definition

~v(C, p) = max{|E(B,)| : B, C-admissible digraph with |V (B,,)| = p}.
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The parameter v(C, p)

Definition

~v(C, p) = max{|E(B,)| : B, C-admissible digraph with |V (B,,)| = p}.

Is v(C, p) achieved using the requests of shortest length?
In the path, it is NOT the case! For instance, take p =11 and C = 10:
34 requests
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The parameter v(C, p)

Definition

~v(C, p) = max{|E(B,)| : B, C-admissible digraph with |V (B,,)| = p}.

Is v(C, p) achieved using the requests of shortest length?
In the path, it is NOT the case! For instance, take p = 11 and C = 10:

0.5)

35 requests (510)

3.7
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In bidirectional rings: the shorter, the better

Let C = ) | r with0 < r < k. Then

Bet) L ifp<2k+1,0orp=2k+2andr> k2

(C,p)={ kp+2r—1 ,ifp=2k+2and1<r<k3?
kp + L%J , otherwise

The graphs achieving v(C, p) are either the tournament T, if p is small
(namely, ifp <2k +1orp=2k+2andr > k+2) or subgraphs of a
circulant digraph containing all the arcs of length 1,2, ..., k, plus some

arcs of length k +1 ifr > 0.

v
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General lower bound

p(C) = max {’V(C’p)}

p=2 p




General lower bound

Definition
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General lower bound

Definition

#0) = max{ MG = e

Theorem (General lower bound)

LetC = @ -+ r, with 0 < r < k. The number of ADMs required in a
bidirectional ring with n nodes and grooming factor C satisfies
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Theorem (General lower bound)

LetC = @ -+ r, with 0 < r < k. The number of ADMs required in a
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Idea of proof: equations of the problem

Given a valid solution of the problem, let

@ a,: # of subgraphs of the partition with exactly p vertices;
@ A: total # of ADMs in the solution; and
@ W: # of subgraphs in the partition.
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Idea of proof: equations of the problem

Given a valid solution of the problem, let

@ a,: # of subgraphs of the partition with exactly p vertices;
@ A: total # of ADMs in the solution; and
@ W: # of subgraphs in the partition.

n
dpa=A
p=2

W n(n—1)

DIE(VO)l = 1E(Ta)l = =

w=1
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Idea of proof: equations of the problem

Given a valid solution of the problem, let

@ a,: # of subgraphs of the partition with exactly p vertices;
@ A: total # of ADMs in the solution; and
@ W: # of subgraphs in the partition.
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Idea of proof: equations of the problem

Given a valid solution of the problem, let

@ a,: # of subgraphs of the partition with exactly p vertices;
@ A: total # of ADMs in the solution; and
@ W: # of subgraphs in the partition.

n
Y pa=A
p=2

n(n—1)

= 2.5(0)
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Optimal constructions for C = 3

@ IfC=1+...+k,then p(C) =k + 15 = Kk, 80

nn—1)  n(n—1)

AC) = 5750 ~ 2k
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Optimal constructions for C = 3

@ IfC=1+...+k,then p(C) =k + 15 = Kk, 80

nn—1)  n(n—1)

AlC) = 556 = 2k

@ ForC=3,wehave3=1+2, s0

n(n—1)
YR

A@B,n) >

Proposition
Forn=1,5 (mod 12),
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Sketch of proof

* Steiner triple system of order N: partition of E(Ky) into K3’s.
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* Steiner triple system of order N: partition of E(Ky) into K3’s.
@ They existif and only if N = 1,3 (mod 6).
@ Let N=1,3 (mod 6) and n = 2N — 1, with

o V(Ky) = {o0,1,...,N—1}.

o V(T,) ={o0,14,...,(N—=1)a,15,...,(N —1)g} clockwise.
@ Consider a Steiner triple system for Ky.
@ Then we transform each triangle as follows:

: .
K2,2,2 P h T5 2

ili — K, N\ Lk '

k j . . i |

Is I

@ # of vertices: 5- (%) +6- (N(’\é_” — %) = nn1),
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Other optimal constructions

If K. can be partitioned into Ky 1's, then there exists an optimal
admissible partition of Toyq 1 for C = “E0 with "0-1) ADMs.
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Other optimal constructions

If K. can be partitioned into Ky 1's, then there exists an optimal
admissible partition of Toyq 1 for C = “E0 with "0-1) ADMs.

Corollary

IfC=6andn=1or7 (mod 24), A(6,n) = 221).
If C =10 andn=1o0r9 (mod 40), A(10,n) = 201,
IfC=15andn=1or11 (mod 30), A(15,n) = 27-1)
IfC=21andn=1or13 (mod 84), A(21,n) = 22-1)
IfC=28andn=1o0r15 (mod 112), A(28,n) = a@=1)
IfC =36 andn=1or17 (mod 144), A(36,n) = 21




Asymptotically optimal solutions

Simple necessary conditions for K, to be edge-partitioned into
subgraphs isomorphic to a given graph H:
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Asymptotically optimal solutions

Simple necessary conditions for K, to be edge-partitioned into
subgraphs isomorphic to a given graph H:

o |E(H)| divides ().

@ gcd{degree sequence of H} divides v — 1.

Theorem (Wilson'75)
For v large enough, the above necessary conditions are also sufficient.

if C = X6 “then A(C,n) = "2=1) forn =1 or2k +1 (mod 4C
2

large enough.
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Merci, Jean-Claude !!
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