Dynamic programming for graphs on surfaces

Ignasi Sau
CNRS, LIRMM, Montpellier, France
\section*{Joint work with:}

Juanjo Rué
Instituto de Ciencias Matemáticas, Madrid, Spain
Dimitrios M. Thilikos
Department of Mathematics, NKU of Athens, Greece
[An extended abstract appeared in ICALP'10]

Outline

(9) Background
(2) Motivation and previous work
(3) Main ideas of our approach

4 Sketch of the enumerative part
(5) Conclusions and further research

Outline

(9) Background
(2) Motivation and previous work
(3) Main ideas of our approach

4 Sketch of the enumerative part
(5) Conclusions and further research

Branch decompositions and branchwidth

- A branch decomposition of a graph $G=(V, E)$ is tuple (T, μ) where:
- T is a tree where all the internal nodes have degree 3.
- μ is a bijection between the leaves of T and $E(G)$.
- Each edge $e \in T$ partitions $E(G)$ into two sets A_{e} and B_{e}.
- For each $e \in E(T)$, we define $\operatorname{mid}(e)=V\left(A_{e}\right) \cap V\left(B_{e}\right)$.
- The width of a branch decomposition is $\max _{e \in E(T)}|\operatorname{mid}(e)|$.
- The branchwidth of a graph $G(d e n o t e d ~ b w(G))$ is the minimum width over all branch decompositions of G :

Branch decompositions and branchwidth

- A branch decomposition of a graph $G=(V, E)$ is tuple (T, μ) where:
- T is a tree where all the internal nodes have degree 3.
- μ is a bijection between the leaves of T and $E(G)$.
- Each edge $e \in T$ partitions $E(G)$ into two sets A_{e} and B_{e}.
- For each $e \in E(T)$, we define $\operatorname{mid}(e)=V\left(A_{e}\right) \cap V\left(B_{e}\right)$.
- The width of a branch decomposition is $\max _{e \in E(T)}|\operatorname{mid}(e)|$.
- The branchwidth of a graph G (denoted $b w(G))$ is the minimum width over all branch decompositions of G :

$$
\mathbf{b w}(G)=\min _{(T, \mu)} \max _{e \in E(T)}|\operatorname{mid}(e)|
$$

Surfaces

- SURFACE $=$ TOPOLOGICAL SPACE, LOCALLY "FLAT"

Handles

Cross-caps

Surface Classification Theorem

- Surface Classification Theorem:
any compact, connected and without boundary surface can be obtained from the sphere \mathbb{S}^{2} by adding handles and cross-caps.
- Orientable surfaces: obtained by adding $g \geq 0$ handles to the sphere \mathbb{S}^{2}, obtaining the g-torus \mathbb{T}_{g} with Euler genus eg $\left(\mathbb{T}_{g}\right)=2 g$.
obtained by adding $h>0$ cross-caps to the sphere \mathbb{S}^{2}, obtaining a non-orientable surface \mathbb{P}_{h} with Euler genus $\operatorname{eg}\left(\mathbb{P}_{h}\right)=h$.

Surface Classification Theorem

- Surface Classification Theorem:
any compact, connected and without boundary surface can be obtained from the sphere \mathbb{S}^{2} by adding handles and cross-caps.
- Orientable surfaces:
obtained by adding $g \geq 0$ handles to the sphere \mathbb{S}^{2}, obtaining the g-torus \mathbb{T}_{g} with Euler genus eg $\left(\mathbb{T}_{g}\right)=2 g$.
- Non-orientable surfaces:
obtained by adding $h>0$ cross-caps to the sphere \mathbb{S}^{2}, obtaining a non-orientable surface \mathbb{P}_{h} with Euler genus eg $\left(\mathbb{P}_{h}\right)=h$.

Surface Classification Theorem

- Surface Classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere \mathbb{S}^{2} by adding handles and cross-caps.
- Orientable surfaces:
obtained by adding $g \geq 0$ handles to the sphere \mathbb{S}^{2}, obtaining the g-torus \mathbb{T}_{g} with Euler genus eg $\left(\mathbb{T}_{g}\right)=2 g$.
- Non-orientable surfaces:
obtained by adding $h>0$ cross-caps to the sphere \mathbb{S}^{2}, obtaining a non-orientable surface \mathbb{P}_{h} with Euler genus $\operatorname{eg}\left(\mathbb{P}_{h}\right)=h$.

Graphs on surfaces

Embedded graph: graph drawn on a surface, no crossings

- The Euler genus of a graph $G, \operatorname{eg}(G)$, is the least Euler genus of the surfaces in which G can be embedded.

Graphs on surfaces

Embedded graph: Graph drawn on a surface, no crossings

- The Euler genus of a graph $G, \operatorname{eg}(G)$, is the least Euler genus of the surfaces in which G can be embedded.

Some words on parameterized complexity

- Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".
Example: the size of a Vertex Cover.
- Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

$$
f(k) \cdot n^{\mathcal{O}(1)}, \text { for some function } f
$$

Examples: k-Vertex Cover, k-Longest Path.

Some words on parameterized complexity

- Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".
Example: the size of a Vertex Cover.
- Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

$$
f(k) \cdot n^{\mathcal{O}(1)}, \text { for some function } f
$$

Examples: k-Vertex Cover, k-Longest Path.

Outline

(1) Background

(2) Motivation and previous work
(3) Main ideas of our approach

4 Sketch of the enumerative part
(5) Conclusions and further research

FPT and single-exponential algorithms

- Courcelle's theorem (1988):

Graph problems expressible in Monadic Second Order Logic (MSOL) can be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$ in graphs G such that $\mathbf{b w}(G) \leq k$.

FPT and single-exponential algorithms

- Courcelle's theorem (1988):

Graph problems expressible in Monadic Second Order Logic (MSOL) can be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$ in graphs G such that $\mathbf{b w}(G) \leq k$.

- Problem: $f(k)$ can be huge!!! (for instance, $f(k)=2^{3^{4^{5^{6^{k}}}}}$)
- A single-exponential parameterized algorithm is a FPT algo s.t.

FPT and single-exponential algorithms

- Courcelle's theorem (1988):

Graph problems expressible in Monadic Second Order Logic (MSOL) can be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$ in graphs G such that $\mathbf{b w}(G) \leq k$.

- Problem: $f(k)$ can be huge!!! (for instance, $f(k)=2^{3^{4^{5^{6^{k}}}}}$)
- A single-exponential parameterized algorithm is a FPT algo s.t.

$$
f(k)=2^{\mathcal{O}(k)}
$$

\square
Objective: build a framework to obtain single-exponential parameterized algorithms for a class of NP-hard problems in graphs embedded on surfaces.

FPT and single-exponential algorithms

- Courcelle's theorem (1988):

Graph problems expressible in Monadic Second Order Logic (MSOL) can be solved in time $f(k) \cdot n^{\mathcal{O}(1)}$ in graphs G such that $\mathbf{b w}(G) \leq k$.

- Problem: $f(k)$ can be huge!!! (for instance, $f(k)=2^{3^{4^{5^{6^{k}}}}}$)
- A single-exponential parameterized algorithm is a FPT algo s.t.

$$
f(k)=2^{\mathcal{O}(k)}
$$

Objective: build a framework to obtain single-exponential parameterized algorithms for a class of NP-hard problems in graphs embedded on surfaces.

Dynamic programming (DP)

- Applied in a bottom-up fashion on a rooted branch decomposition of the input graph G.
- For each graph problem, DP requires the suitable definition of tables encoding how potential (global) solutions are restricted to a middle set $\operatorname{mid}(e)$.
- The size of the tables reflects the dependence on $k=|\operatorname{mid}(e)|$ in the running time of the DP.
- The precise definition of the tables of the DP depends on each particular problem.

Dynamic programming (DP)

- Applied in a bottom-up fashion on a rooted branch decomposition of the input graph G.
- For each graph problem, DP requires the suitable definition of tables encoding how potential (global) solutions are restricted to a middle set $\operatorname{mid}(e)$.
- The size of the tables reflects the dependence on $k=|\operatorname{mid}(e)|$ in the running time of the DP.
- The precise definition of the tables of the DP depends on each particular problem.

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?
(1) A subset of vertices of mid (e) (not restricted by some global condition). Fxamnles: Vfrtex Cover Dominating Set The size of the tables is bounded by 2

A classification of graph optimization problems

How can we certificate a solution in a middle set mid (e) ?
(1) A subset of vertices of mid(e) (not restricted by some global condition). Examples: Vertex Cover, Dominating Set.
The size of the tables is bounded by 2

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?
(1) A subset of vertices of $\boldsymbol{m i d}(e)$ (not restricted by some global condition). Examples: Vertex Cover, Dominating Set. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
(2) A connected pairing of vertices of mid (e) Examples: Longest Path, Cycle Packing, Hamiltonian Cycle.

A classification of graph optimization problems

How can we certificate a solution in a middle set mid (e) ?
(1) A subset of vertices of $\boldsymbol{m i d}(e)$ (not restricted by some global condition). Examples: Vertex Cover, Dominating Set. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
(2) A connected pairing of vertices of mid(e). Examples: Longest Path, Cycle Packing, Hamiltonian Cycle.
The $\#$ of pairings in a set of k elements is $k^{\Theta(k)}=2^{\Theta(k \log k)} \ldots$
Done for planar graphs
Done for graphs on surfaces

A classification of graph optimization problems

How can we certificate a solution in a middle set mid (e) ?
(1) A subset of vertices of $\boldsymbol{m i d}(e)$ (not restricted by some global condition). Examples: Vertex Cover, Dominating Set. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
(2) A connected pairing of vertices of mid(e). Examples: Longest Path, Cycle Packing, Hamiltonian Cycle. The $\#$ of pairings in a set of k elements is $k^{\Theta(k)}=2^{\Theta(k \log k)} \ldots$
Done for planar graphs
Done for graphs on surfaces

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?
(1) A subset of vertices of $\boldsymbol{\operatorname { m i d }}(e)$ (not restricted by some global condition). Examples: Vertex Cover, Dominating Set. The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
(2) A connected pairing of vertices of $\operatorname{mid}(e)$. Examples: Longest Path, Cycle Packing, Hamiltonian Cycle. The \# of pairings in a set of k elements is $k^{\Theta(k)}=2^{\Theta(k \log k)} \ldots$
Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESÁ05]; Done for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
(0. Connected packing of vertices of mid(e) into subsets of arbitrary size. Examples: COnNected Vertex Cover, Max leaf Spanning Tree.

A classification of graph optimization problems

How can we certificate a solution in a middle set $\operatorname{mid}(e)$?
(1) A subset of vertices of $\boldsymbol{m i d}(e)$ (not restricted by some global condition). Examples: Vertex Cover, Dominating Set.
The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
(2) A connected pairing of vertices of mid(e).

Examples: Longest Path, Cycle Packing, Hamiltonian Cycle. The $\#$ of pairings in a set of k elements is $k^{\Theta(k)}=2^{\Theta(k \log k)} \ldots$
Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05]; Done for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
(3) Connected packing of vertices of mid(e) into subsets of arbitrary size. Examples: Connected Vertex Cover, Max Leaf Spanning Tree.
Again, \# of packings in a set of k elements is $2^{〔}$

A classification of graph optimization problems

How can we certificate a solution in a middle set mid(e)?
(1) A subset of vertices of $\boldsymbol{m i d}(e)$ (not restricted by some global condition).

Examples: Vertex Cover, Dominating Set.
The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
(2) A connected pairing of vertices of mid(e).

Examples: Longest Path, Cycle Packing, Hamiltonian Cycle.
The $\#$ of pairings in a set of k elements is $k^{\Theta(k)}=2^{\Theta(k \log k)} \ldots$
Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'05]; Done for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
(3) Connected packing of vertices of mid(e) into subsets of arbitrary size. Examples: Connected Vertex Cover, Max Leaf Spanning Tree. Again, \# of packings in a set of k elements is $2^{\Theta(k \log k)}$.

None of the current techniques seemed to fit in this class of
connected packinc-encodable problems

A classification of graph optimization problems

How can we certificate a solution in a middle set $\operatorname{mid}(e)$?
(1) A subset of vertices of $\boldsymbol{\operatorname { m i d }}(e)$ (not restricted by some global condition).

Examples: Vertex Cover, Dominating Set.
The size of the tables is bounded by $2^{\mathcal{O}(k)}$.
(2) A connected pairing of vertices of mid(e).

Examples: Longest Path, Cycle Packing, Hamiltonian Cycle.
The \# of pairings in a set of k elements is $k^{\Theta(k)}=2^{\Theta(k \log k)} \ldots$
Done for planar graphs [Dorn, Penninkx, Bodlaender, Fomin. ESA'O5]; Done for graphs on surfaces [Dorn, Fomin, Thilikos. SWAT'06].
(3) Connected packing of vertices of $\operatorname{mid}(e)$ into subsets of arbitrary size. Examples: Connected Vertex Cover, Max Leaf Spanning Tree. Again, \# of packings in a set of k elements is $2^{\Theta(k \log k)}$.

None of the current techniques seemed to fit in this class of connected packing-encodable problems...

Outline

(1) Background

(2) Motivation and previous work
(3) Main ideas of our approach

4 Sketch of the enumerative part

(5) Conclusions and further research

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to \mathbb{S}^{1} that meets G only at vertices.

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to \mathbb{S}^{1} that meets G only at vertices.

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to \mathbb{S}^{1} that meets G only at vertices.

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to \mathbb{S}^{1} that meets G only at vertices.

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to \mathbb{S}^{1} that meets G only at vertices.

Nooses

Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to \mathbb{S}^{1} that meets G only at vertices.

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose. [Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect mid(e).
- In how many ways can we draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid (e) are situated around a noose.
[Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect mid(e).
- In how many ways can we draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect mid(e).
- In how many ways can we draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect mid(e).
- In how many ways can we draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

- Exactly the number of

over k elements, which is aiven by the $k-t h$ Catalan number:

Sphere cut decompositions

Key idea for planar graphs [Dorn et al. ESA'05]:

- Sphere cut decomposition: Branch decomposition where the vertices in each mid(e) are situated around a noose.
[Seymour and Thomas. Combinatorica'94]
- Recall that the size of the tables of a DP algorithm depends on how many ways a partial solution can intersect mid(e).
- In how many ways can we draw polygons inside a circle such that they touch the circle only on its k vertices and they do not intersect?

- Exactly the number of non-crossing partitions over k elements, which is given by the k-th Catalan number:

$$
\mathrm{CN}(k)=\frac{1}{k+1}\binom{2 k}{k} \sim \frac{4^{k}}{\sqrt{\pi} k^{3 / 2}} \approx 4^{k} .
$$

"Old" idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT'06]:

- Perform a planarization of the input graph by splitting the potential solutions into a number of pieces depending on the surface.
- Then, apply the sphere cut decomposition technique to a more complicated version of the problem where the number of pairings is still bounded by some Catalan number.
- Drawbacks of this technique:
* It depends on each particular problem.

"Old" idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT'06]:

- Perform a planarization of the input graph by splitting the potential solutions into a number of pieces depending on the surface.
- Then, apply the sphere cut decomposition technique to a more complicated version of the problem where the number of pairings is still bounded by some Catalan number.
- Drawbacks of this technique:
\perp It depends on each particular problem.
Cannot (a priori) be applied to the class of connected
packing-encodable problems.

"Old" idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT'06]:

- Perform a planarization of the input graph by splitting the potential solutions into a number of pieces depending on the surface.
- Then, apply the sphere cut decomposition technique to a more complicated version of the problem where the number of pairings is still bounded by some Catalan number.
- Drawbacks of this technique:
\star It depends on each particular problem.

> * Cannot (a priori) be applied to the class of connected packing-encodable problems.

"Old" idea for graphs on surfaces

Key idea for graphs on surfaces [Dorn et al. SWAT'06]:

- Perform a planarization of the input graph by splitting the potential solutions into a number of pieces depending on the surface.
- Then, apply the sphere cut decomposition technique to a more complicated version of the problem where the number of pairings is still bounded by some Catalan number.
- Drawbacks of this technique:
\star It depends on each particular problem.
\star Cannot (a priori) be applied to the class of connected packing-encodable problems.

From
 cut decompositions

Our approach is based on a new type of branch decomposition, called surface cut decomposition.

- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs.

That is, we exploit directly the combinatorial structure of the potential solutions in the surface (without olanarization)

From
 cut decompositions

Our approach is based on a new type of branch decomposition, called surface cut decomposition.

- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs. [Seymour and Thomas. Combinatorica'94]
- That is, we exploit directly the combinatorial structure of the potential solutions in the surface (without planarization)

Using surface cut decompositions, we provide in a unified way single-exponential algorithms for connected packing-encodable problems, and with better genus dependence.

From
 cut decompositions

Our approach is based on a new type of branch decomposition, called surface cut decomposition.

- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs. [Seymour and Thomas. Combinatorica'94]
- That is, we exploit directly the combinatorial structure of the potential solutions in the surface (without planarization).
- Using surface cut decompositions, we provide in a unified way single-exponential algorithms for connected packing-encodable problems, and with better genus dependence.

From sonere to suriace cut decompositions

Our approach is based on a new type of branch decomposition, called surface cut decomposition.

- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs. [Seymour and Thomas. Combinatorica'94]
- That is, we exploit directly the combinatorial structure of the potential solutions in the surface (without planarization).
- Using surface cut decompositions, we provide in a unified way single-exponential algorithms for connected packing-encodable problems, and with better genus dependence.

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with $\mathbf{e g}(\Sigma)=\mathbf{g}$.
A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A|=\mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with $\mathbf{e g}(\Sigma)=\mathbf{g}$.
A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A|=\mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

- either $|\operatorname{mid}(e) \backslash A| \leq 2$,
the vertices in $\operatorname{mid}(e) \backslash A$ are contained in a set \mathcal{N} of $\mathcal{O}(\mathbf{g})$ nooses;
these nooses intersect in $\mathcal{O}(a)$ vertices:

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with $\mathbf{e g}(\Sigma)=\mathbf{g}$.
A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A|=\mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

- either $|\operatorname{mid}(e) \backslash A| \leq 2$,
- or
* the vertices in $\operatorname{mid}(e) \backslash A$ are contained in a set \mathcal{N} of $\mathcal{O}(\mathbf{g})$ nooses;
these nooses intersect in $\mathcal{O}(\mathrm{g})$ vertices;

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with $\mathbf{e g}(\Sigma)=\mathbf{g}$.
A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A|=\mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

- either $|\operatorname{mid}(e) \backslash A| \leq 2$,
- or
* the vertices in $\operatorname{mid}(e) \backslash A$ are contained in a set \mathcal{N} of $\mathcal{O}(\mathbf{g})$ nooses;
* these nooses intersect in $\mathcal{O}(\mathbf{g})$ vertices;

Surface cut decompositions (simplified version)

Let G be a graph embedded in a surface Σ, with $\mathbf{e g}(\Sigma)=\mathbf{g}$.
A surface cut decomposition of G is a branch decomposition (T, μ) of G and a subset $A \subseteq V(G)$, with $|A|=\mathcal{O}(\mathbf{g})$, s.t. for all $e \in E(T)$

- either $|\boldsymbol{\operatorname { m i d }}(e) \backslash A| \leq 2$,
- or
* the vertices in $\operatorname{mid}(e) \backslash A$ are contained in a set \mathcal{N} of $\mathcal{O}(\mathbf{g})$ nooses;
* these nooses intersect in $\mathcal{O}(\mathbf{g})$ vertices;
$\star \Sigma \backslash \bigcup_{N \in \mathcal{N}} N$ contains exactly two connected components.

Main results (I)

Surface cut decompositions can be efficiently computed:
Theorem (Rué, Thilikos, and S.)
Given a G on n vertices embedded in a surface of Euler genus \mathbf{g}, with $\operatorname{bw}(G) \leq k$, one can construct in $2^{3 k+\mathcal{O}(\log k)} \cdot n^{3}$ time a surface cut decomposition (T, μ) of G of width at most $27 k+\mathcal{O}(\mathbf{g})$.

Sketch of the construction of surface cut decompositions:

- Partition G into polyhedral pieces, plus a set of A vertices, with $|A|=O(\mathbf{g})$.

For each piece H, compute a branch decomposition, using Amir's algorithm.
Transform this branch decomposition to a carving decomposition of the medial

Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus \mathbf{g}, with $\operatorname{bw}(G) \leq k$, one can construct in $2^{3 k+\mathcal{O}(\log k)} \cdot n^{3}$ time a surface cut decomposition (T, μ) of G of width at most $27 k+\mathcal{O}(\mathbf{g})$.

Sketch of the construction of surface cut decompositions:

- Partition G into polyhedral pieces, plus a set of A vertices, with $|A|=O(\mathbf{g})$.
- For each piece H, compute a branch decomposition, using Amir's algorithm.
- Transform this branch decomposition to a carving decomposition of the medial graph of H.
- Make the carving decomposition bond, using Seymour and Thomas' algorithm.

Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus \mathbf{g}, with $\operatorname{bw}(G) \leq k$, one can construct in $2^{3 k+\mathcal{O}(\log k)} \cdot n^{3}$ time a surface cut decomposition (T, μ) of G of width at most $27 k+\mathcal{O}(\mathbf{g})$.

Sketch of the construction of surface cut decompositions:

- Partition G into polyhedral pieces, plus a set of A vertices, with $|A|=O(\mathbf{g})$.
- For each piece H, compute a branch decomposition, using Amir's algorithm.
- Transform this branch decomposition to a carving decomposition of the medial graph of H.
- Make the carving decomposition bond, using Seymour and Thomas' algorithm.

Transform it to a bond branch decomposition of H.
Construct a branch decomposition of G by merging the branch decompositions

Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus g, with $\operatorname{bw}(G) \leq k$, one can construct in $2^{3 k+\mathcal{O}(\log k)} \cdot n^{3}$ time a surface cut decomposition (T, μ) of G of width at most $27 k+\mathcal{O}(\mathbf{g})$.

Sketch of the construction of surface cut decompositions:

- Partition G into polyhedral pieces, plus a set of A vertices, with $|A|=O(\mathbf{g})$.
- For each piece H, compute a branch decomposition, using Amir's algorithm.
- Transform this branch decomposition to a carving decomposition of the medial graph of H.
- Make the carving decomposition bond, using Seymour and Thomas' algorithm.
> - Transform it to a bond branch decomposition of H.
> - Construct a branch decomposition of G by merging the branch decompositions of all the pieces.

Main results (I)

Surface cut decompositions can be efficiently computed:

Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus g, with $\mathrm{bw}(G) \leq k$, one can construct in $2^{3 k+\mathcal{O}(\log k)} \cdot n^{3}$ time a surface cut decomposition (T, μ) of G of width at most $27 k+\mathcal{O}(\mathbf{g})$.

Sketch of the construction of surface cut decompositions:

- Partition G into polyhedral pieces, plus a set of A vertices, with $|A|=O(\mathbf{g})$.
- For each piece H, compute a branch decomposition, using Amir's algorithm.
- Transform this branch decomposition to a carving decomposition of the medial graph of H.
- Make the carving decomposition bond, using Seymour and Thomas' algorithm.
- Transform it to a bond branch decomposition of H.
- Construct a branch decomposition of G by merging the branch decompositions of all the pieces.

Main results (II)

The main result is that if DP is applied on surface cut decompositions, then the time dependence on branchwidth is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem P in a graph G embedded in a surface of Euler genus g , with $\mathrm{bw}(G) \leq k$, the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by $2^{\mathcal{O}(\log g \cdot k+\log k \cdot g)}$.
> - This fact is proved using analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.

- Upper bound of

Main results (II)

The main result is that if DP is applied on surface cut decompositions, then the time dependence on branchwidth is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem P in a graph G embedded in a surface of Euler genus g , with $\mathrm{bw}(G) \leq k$, the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by $2^{\mathcal{O}(\log g \cdot k+\log k \cdot g)}$.

- This fact is proved using analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.
- Upper bound of

Main results (II)

The main result is that if DP is applied on surface cut decompositions, then the time dependence on branchwidth is single-exponential:

Theorem (Rué, Thilikos, and S.)

Given a connected packing-encodable problem P in a graph G embedded in a surface of Euler genus g , with $\mathrm{bw}(G) \leq k$, the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by $2^{\mathcal{O}(\log g \cdot k+\log k \cdot g)}$.

- This fact is proved using analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.
- Upper bound of [Dorn, Fomin, Thilikos. SWAT'06]: $2^{\mathcal{O}\left(g \cdot k+\log k \cdot \mathbf{g}^{2}\right)}$.

Outline

(1) Background
(2) Motivation and previous work
(3) Main ideas of our approach

4 Sketch of the enumerative part
(5) Conclusions and further research

Bipartite subdivisions

- Subdivision of the surface in vertices, edges and 2-dimensional regions (not necessary contractible).
- All vertices lay in the boundary.
- 2 types of 2-dimensional regions: black and white.
- Each vertex is incident with exactly 1 black region (also called block).
- Each border is rooted.

Fixing the number of vertices on a given surface, we have an infinite number of bipartite subdivisions.

Non-crossing partitions in higher genus surfaces

- Each bipartite subdivision induces a non-crossing partition on the set of vertices.
- Problem: Different bipartite subdivisions can define the same non-crossing partition.

- Objective: finding "good" bounds for the number of non-crossing nartitions on a given surface.

Non-crossing partitions in higher genus surfaces

- Each bipartite subdivision induces a non-crossing partition on the set of vertices.
- Problem: Different bipartite subdivisions can define the same non-crossing partition.

- Objective: finding "good" bounds for the number of non-crossing partitions on a given surface.

The strategy

We make the problem "easier" by reducing it to a map enumeration problem:
(1) For each bipartite subdivision there exists another bipartite subdivision, with all the blocks contractible, with the same associated non-crossing partition.
(2) We show that the greatest contribution comes from bipartite subdivisions where white faces are contractible.

The strategy

We make the problem "easier" by reducing it to a map enumeration problem:
(1) For each bipartite subdivision there exists another bipartite subdivision, with all the blocks contractible, with the same associated non-crossing partition.
(2) We show that the greatest contribution comes from bipartite subdivisions where white faces are contractible.
(3) We get upper bounds for non-crossing partitions by enumerating bipartite subdivisions where all 2-dimensional regions are contractible.

The strategy

We make the problem "easier" by reducing it to a map enumeration problem:
(1) For each bipartite subdivision there exists another bipartite subdivision, with all the blocks contractible, with the same associated non-crossing partition.
(2) We show that the greatest contribution comes from bipartite subdivisions where white faces are contractible.
(3) We get upper bounds for non-crossing partitions by enumerating bipartite subdivisions where all 2-dimensional regions are contractible.

The enumeration (I)

We exploit the ideas used to asymptotically count simplicial decompositions on surfaces with boundaries [Bernardi, Rué. Manuscript'09]:

Roughly speaking, a map of this type can be constructed from a map on the initial surface with a fixed number of faces (hence, from a finite number of maps).

The enumeration (I)

We exploit the ideas used to asymptotically count simplicial decompositions on surfaces with boundaries [Bernardi, Rué. Manuscript'09]:

Roughly speaking, a map of this type can be constructed from a map on the initial surface with a fixed number of faces (hence, from a finite number of maps).

The enumeration (II)

The previous construction is "inversible":

Maps with a fixed number of faces and the maximum number of edges are cubic maps \Rightarrow They bring the greatest contribution to the asymptotics.

The enumeration (II)

The previous construction is "inversible":

Maps with a fixed number of faces and the maximum number of edges are cubic maps \Rightarrow They bring the greatest contribution to the asymptotics.

Main enumerative result

After some study of bicolored trees and its asymptotics...

Theorem (Rué, Thilikos, S.)

Let Σ be a surface with boundary. Then the number of non-crossing partitions on Σ with k vertices is asymptotically bounded by

$$
\frac{C(\Sigma)}{\Gamma(-3 / 2 \chi(\Sigma)+\beta(\Sigma))} \cdot k^{-3 / 2 \chi(\Sigma)+\beta(\Sigma)-1} \cdot 4^{k} \cdot(1+o(1)),
$$

where
 - $C(\Sigma)$ is a function depending only on Σ (cubic maps in $\bar{\Sigma}$ with $\beta(\Sigma)$ faces).
 - $\chi(\Sigma)$ is the Euler characteristic $(\chi(\Sigma)=2-\mathbf{e g}(\Sigma))$.
 - $\beta(\Sigma)$ is the number of components of the boundary (it depends linearly on the branchwidth of the input graph).

In the case of the disk (Catalan numbers):

Main enumerative result

After some study of bicolored trees and its asymptotics...

Theorem (Rué, Thilikos, S.)

Let Σ be a surface with boundary. Then the number of non-crossing partitions on Σ with k vertices is asymptotically bounded by

$$
\frac{C(\Sigma)}{\Gamma(-3 / 2 \chi(\Sigma)+\beta(\Sigma))} \cdot k^{-3 / 2 \chi(\Sigma)+\beta(\Sigma)-1} \cdot 4^{k} \cdot(1+o(1)),
$$

where

- $C(\Sigma)$ is a function depending only on Σ (cubic maps in $\bar{\Sigma}$ with $\beta(\Sigma)$ faces).
- $\chi(\Sigma)$ is the Euler characteristic $(\chi(\Sigma)=2-\mathbf{e g}(\Sigma))$.
- $\beta(\Sigma)$ is the number of components of the boundary (it depends linearly on the branchwidth of the input graph).

In the case of the disk (Catalan numbers):

Main enumerative result

After some study of bicolored trees and its asymptotics...

Theorem (Rué, Thilikos, S.)

Let Σ be a surface with boundary. Then the number of non-crossing partitions on Σ with k vertices is asymptotically bounded by

$$
\frac{C(\Sigma)}{\Gamma(-3 / 2 \chi(\Sigma)+\beta(\Sigma))} \cdot k^{-3 / 2 \chi(\Sigma)+\beta(\Sigma)-1} \cdot 4^{k} \cdot(1+o(1)),
$$

where

- $C(\Sigma)$ is a function depending only on Σ (cubic maps in $\bar{\Sigma}$ with $\beta(\Sigma)$ faces).
- $\chi(\Sigma)$ is the Euler characteristic $(\chi(\Sigma)=2-\mathbf{e g}(\Sigma))$.
- $\beta(\Sigma)$ is the number of components of the boundary (it depends linearly on the branchwidth of the input graph).

In the case of the disk (Catalan numbers): $\frac{1}{\sqrt{\pi}} \cdot k^{-3 / 2} \cdot 4^{k} \cdot(1+o(1))$.

Outline

(1) Background
(2) Motivation and previous work
(3) Main ideas of our approach

4 Sketch of the enumerative part
(5) Conclusions and further research

How to use this framework?

- We presented a framework for the design of DP algorithms on surface-embedded graphs running in time $2^{\mathcal{O}(k)} \cdot n$.
(1) Let \mathbf{P} be a connected packing-encodable problem on a surface-embedded graph G.
(2) As a preprocessing step, build a surface cut decomposition of G, using the 1st Theorem.

How to use this framework?

- We presented a framework for the design of DP algorithms on surface-embedded graphs running in time $2^{\mathcal{O}(k)} \cdot n$.
- How to use this framework?
(1) Let \mathbf{P} be a connected packing-encodable problem on a surface-embedded graph G.
(2) As a preprocessing step, build a surface cut decomposition of G, using the 1st Theorem.
© Run a "clever" DP algorithm to solve P over the obtained surface cut decomposition.

How to use this framework?

- We presented a framework for the design of DP algorithms on surface-embedded graphs running in time $2^{\mathcal{O}(k)} \cdot n$.
- How to use this framework?
(1) Let \mathbf{P} be a connected packing-encodable problem on a surface-embedded graph G.
(2) As a preprocessing step, build a surface cut decomposition of G, using the 1st Theorem.
(3) Run a "clever" DP algorithm to solve P over the obtained surface cut decomposition.
a The single-exmonential running time of the algorithm is a consequence of the 2nd Theorem.

How to use this framework?

- We presented a framework for the design of DP algorithms on surface-embedded graphs running in time $2^{\mathcal{O}(k)} \cdot n$.
- How to use this framework?
(1) Let \mathbf{P} be a connected packing-encodable problem on a surface-embedded graph G.
(2) As a preprocessing step, build a surface cut decomposition of G, using the 1st Theorem.
(3) Run a "clever" DP algorithm to solve \mathbf{P} over the obtained surface cut decomposition.
(9) The single-exponential running time of the algorithm is a consequence of the 2nd Theorem.

How to use this framework?

- We presented a framework for the design of DP algorithms on surface-embedded graphs running in time $2^{\mathcal{O}(k)} \cdot n$.
- How to use this framework?
(1) Let \mathbf{P} be a connected packing-encodable problem on a surface-embedded graph G.
(2) As a preprocessing step, build a surface cut decomposition of G, using the 1st Theorem.
(3) Run a "clever" DP algorithm to solve \mathbf{P} over the obtained surface cut decomposition.
(4) The single-exponential running time of the algorithm is a consequence of the $2 n d$ Theorem.

Further research

(1) Improve the constants in the running times.

Can this framework be applied to more complicated problems?
Fundamental problem: H-minor containment

Minor containment for host graphs Gon surfaces.

Further research

(1) Improve the constants in the running times.
(2) Can this framework be applied to more complicated problems?

Fundamental problem: H-minor containment

> Minor containment for host graphs G on surfaces.

> With running time $2^{\mathcal{O}(k)} \cdot h^{2 k} \cdot 2^{\mathcal{O}(h)} \cdot n$.
> $(h=|V(H)|, k=\mathbf{b w}(G), n=|V(G)|)$
> Single-exponential algorithm for planar host graphs.

Truly single-exponential: 2

Further research

(1) Improve the constants in the running times.
(2) Can this framework be applied to more complicated problems?

Fundamental problem: H-minor containment

* Minor containment for host graphs G on surfaces. [Adler, Dorn, Fomin, S., Thilikos. SWAT'10]
With running time $2^{\mathcal{O}(k)} \cdot h^{2 k} \cdot 2^{\mathcal{O}(h)} \cdot n$.
$(h=|V(H)|, k=\mathbf{b w}(G), n=|V(G)|)$
Single-exponential algorithm for planar host graphs.

Truly single-exponential: $2^{\mathcal{O}(h)} \cdot n$.

Further research

(1) Improve the constants in the running times.
(2) Can this framework be applied to more complicated problems?

Fundamental problem: H-minor containment

* Minor containment for host graphs G on surfaces. [Adler, Dorn, Fomin, S., Thilikos. SWAT'10]
With running time $2^{\mathcal{O}(k)} \cdot h^{2 k} \cdot 2^{\mathcal{O}(h)} \cdot n$.
$(h=|V(H)|, k=\mathbf{b w}(G), n=|V(G)|)$
* Single-exponential algorithm for planar host graphs.
[Adler, Dorn, Fomin, S., Thilikos. ESA'10]
Truly single-exponential: $2^{\mathcal{O}(h)} \cdot n$.
Can it be generalized to host graphs on arbitrary surfaces?

Further research

(1) Improve the constants in the running times.
(2) Can this framework be applied to more complicated problems?

Fundamental problem: H-minor containment

* Minor containment for host graphs G on surfaces.
[Adler, Dorn, Fomin, S., Thilikos. SWAT'10]
With running time $2^{\mathcal{O}(k)} \cdot h^{2 k} \cdot 2^{\mathcal{O}(h)} \cdot n$.
($h=|V(H)|, k=\mathbf{b w}(G), n=|V(G)|)$
* Single-exponential algorithm for planar host graphs.
[Adler, Dorn, Fomin, S., Thilikos. ESA'10]
Truly single-exponential: $2^{\mathcal{O}(h)} \cdot n$.
Can it be generalized to host graphs on arbitrary surfaces?
(3) Can this framework be extended to more general graphs? Ongoing work: minor-free graphs.

Further research

(1) Improve the constants in the running times.
(2) Can this framework be applied to more complicated problems?

Fundamental problem: H-minor containment

* Minor containment for host graphs G on surfaces. [Adler, Dorn, Fomin, S., Thilikos. SWAT'10]
With running time $2^{\mathcal{O}(k)} \cdot h^{2 k} \cdot 2^{\mathcal{O}(h)} \cdot n$.
($h=|V(H)|, k=\mathbf{b w}(G), n=|V(G)|)$
* Single-exponential algorithm for planar host graphs.
[Adler, Dorn, Fomin, S., Thilikos. ESA'10]
Truly single-exponential: $2^{\mathcal{O}(h)} \cdot n$.
Can it be generalized to host graphs on arbitrary surfaces?
(3) Can this framework be extended to more general graphs?

Ongoing work: minor-free graphs...

Gràcies!

