Degree-Constrained Subgraph Problems: Hardness and Approximation

Omid Amini - Max Planck (Germany)
David Peleg - Weizmann Inst. (Israel) Stéphane Perénnes - CNRS (France)
Ignasi Sau - CNRS (France) + UPC (Spain)
Saket Saurabh - Univ. Bergen (Norway)
Mascotte Project - INRIA/CNRS-I3S/UNSA - FRANCE Applied Mathematics IV Department of UPC - SPAIN

Seminar M.P.L.A - NKU A $\theta \eta \nu \alpha$ - November 28th, 2008

Outline of the talk (ALGO/WAOA’08)

- Introduction / Preliminaries
- Problem 1
- Definition + results
- An approximation algorithm
- Problem 2
- Definition + results
- A hardness result
- An approximation algorithm
- Problem 3
- Definition + results
- Further research

Degree-Constrained Subgraph Problems

Broad family of problems

- A typical Degree-Constrained Subgraph Problem:

Input:

- a (weighted or unweighted) graph G, and
- an integer d.

Output:

- a (connected) subgraph H of G,
- satisfying some degree constraints $(\triangle(H) \leq d$ or $\delta(H) \geq d)$,
- and optimizing some parameter (|V(H)| or |E(H)|).

Broad family of problems

- A typical Degree-Constrained Subgraph Problem:

Input:

- a (weighted or unweighted) graph G, and
- an integer d.

Output:

- a (connected) subgraph H of G,
- satisfying some degree constraints $(\Delta(H) \leq d$ or $\delta(H) \geq d)$,
- and optimizing some parameter $(|V(H)|$ or $|E(H)|)$.

Several problems in this broad family are classical widely studied
NP-hard problems.

Broad family of problems

- A typical Degree-Constrained Subgraph Problem:

Input:

- a (weighted or unweighted) graph G, and
- an integer d.

Output:

- a (connected) subgraph H of G,
- satisfying some degree constraints $(\Delta(H) \leq d$ or $\delta(H) \geq d)$,
- and optimizing some parameter $(|V(H)|$ or $|E(H)|)$.
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry,

Broad family of problems

- A typical Degree-Constrained Subgraph Problem:

Input:

- a (weighted or unweighted) graph G, and
- an integer d.

Output:

- a (connected) subgraph H of G,
- satisfying some degree constraints $(\Delta(H) \leq d$ or $\delta(H) \geq d)$,
- and optimizing some parameter $(|V(H)|$ or $|E(H)|)$.
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

Broad family of problems

- A typical Degree-Constrained Subgraph Problem:

Input:

- a (weighted or unweighted) graph G, and
- an integer d.

Output:

- a (connected) subgraph H of G,
- satisfying some degree constraints $(\Delta(H) \leq d$ or $\delta(H) \geq d)$,
- and optimizing some parameter $(|V(H)|$ or $|E(H)|)$.
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

Preliminaries: approximation algorithms

- Given a (typically NP-hard) minimization problem Π, we say that ALG is an α-approximation algorithm for Π (with $\alpha \geq 1$) if for any instance $/$ of Π,

$$
A L G(I) \leq \alpha \cdot O P T(I)
$$

- Example:

Minimum Vertex Cover
An undirected graph $G=(V, E)$.
A subset $S \subseteq V$ such that for each $\{u, v\} \in E$, at least one of u and
v is in S, and such that $|S|$ is minimized.

- Approximation algorithm for Minimum Vertex Cover:
output a maximal matching.

Preliminaries: approximation algorithms

- Given a (typically NP-hard) minimization problem Π, we say that ALG is an α-approximation algorithm for Π (with $\alpha \geq 1$) if for any instance $/$ of Π,

$$
A L G(I) \leq \alpha \cdot O P T(I)
$$

- Example:

Minimum Vertex Cover
Input: An undirected graph $G=(V, E)$.
Output: A subset $S \subseteq V$ such that for each $\{u, v\} \in E$, at least one of u and v is in S, and such that $|S|$ is minimized.

- Approximation algorithm for Minimum Vertex Cover: output a maximal matching.

Preliminaries: approximation algorithms

- Given a (typically NP-hard) minimization problem Π, we say that ALG is an α-approximation algorithm for Π (with $\alpha \geq 1$) if for any instance $/$ of Π,

$$
A L G(I) \leq \alpha \cdot O P T(I)
$$

- Example:

Minimum Vertex Cover
Input: An undirected graph $G=(V, E)$.
Output: A subset $S \subseteq V$ such that for each $\{u, v\} \in E$, at least one of u and v is in S, and such that $|S|$ is minimized.

- Approximation algorithm for Minimum Vertex Cover: \longrightarrow output a maximal matching.

Preliminaries: approximation algorithms

- Given a (typically NP-hard) minimization problem П, we say that ALG is an α-approximation algorithm for Π (with $\alpha \geq 1$) if for any instance $/$ of Π,

$$
A L G(I) \leq \alpha \cdot O P T(I)
$$

- Example:

Minimum Vertex Cover
Input: An undirected graph $G=(V, E)$.
Output: A subset $S \subseteq V$ such that for each $\{u, v\} \in E$, at least one of u and v is in S, and such that $|S|$ is minimized.

- Approximation algorithm for Minimum Vertex Cover: \longrightarrow output a maximal matching.
- This algorithm is a 2-approximation for Minimum Vertex Cover.

Preliminaries (II): hardness of approximation

- Class APX (Approximable):
an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

Example: Minimum Vertex Cover

- Class PTAS (Polynomial-Time Approximation Scheme):
an NP-hard ontimization nroblem is in PTAS if it can be approximated within a constant factor $1+\varepsilon$, for all $\varepsilon>0$ (the best one can hope for an NP-complete problem).

Example: MAXIMUM KNAPSACK

\square

Preliminaries (II): hardness of approximation

- Class APX (Approximable):
an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

Example: Minimum Vertex Cover

- Class PTAS (Polynomial-Time Approximation Scheme):
an NP-hard optimization problem is in PTAS if it can be approximated within a constant factor $1+\varepsilon$, for all $\varepsilon>0$ (the best one can hope for an NP-complete problem).

Example: MAXIMUM KNAPSACK

- We know that

PTAS \ddagger APX (again, Min Set Cover!)

- Thus, if Π is an ontimization problem:

Preliminaries (II): hardness of approximation

- Class APX (Approximable):
an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

Example: Minimum Vertex Cover

- Class PTAS (Polynomial-Time Approximation Scheme):
an NP-hard optimization problem is in PTAS if it can be approximated within a constant factor $1+\varepsilon$, for all $\varepsilon>0$ (the best one can hope for an NP-complete problem).

Example: MAXImum Knapsack

- We know that

$$
\text { PTAS } \varsubsetneqq \text { APX (again, Min Set Cover!) }
$$

- Thus, if Π is an optimization problem:

$$
\Pi \text { is APX-hard } \Rightarrow \Pi \notin \text { PTAS }
$$

1- Maximum d-Degree-Bounded Connected Subgraph

Definition of the problem

- Maximum d-Degree-Bounded Connected Subgraph (MDBCS $_{d}$):

Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega: E \rightarrow \mathbb{R}^{+}$.

Output:
a subset of edges $E^{\prime} \subseteq E$ of maximum weight, s.t. $G^{\prime}=\left(V, E^{\prime}\right)$

- is connected, and
- has maximum degree $\leq d$.

It is one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979$]$

Definition of the problem

- Maximum d-Degree-Bounded Connected Subgraph (MDBCS_{d}):

Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega: E \rightarrow \mathbb{R}^{+}$.

Output:

a subset of edges $E^{\prime} \subseteq E$ of maximum weight, s.t. $G^{\prime}=\left(V, E^{\prime}\right)$

- is connected, and
- has maximum degree $\leq d$.
- It is one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979].
problem is in \mathbf{P} for any d (using matching techniques)

Definition of the problem

- Maximum d-Degree-Bounded Connected Subgraph $\left(\right.$ MDBCS $\left._{d}\right)$:

Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega: E \rightarrow \mathbb{R}^{+}$.

Output:

a subset of edges $E^{\prime} \subseteq E$ of maximum weight, s.t. $G^{\prime}=\left(V, E^{\prime}\right)$

- is connected, and
- has maximum degree $\leq d$.
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the
problem is in \mathbf{P} for any d (using matching techniques).

Definition of the problem

- Maximum d-Degree-Bounded Connected Subgraph $\left(\right.$ MDBCS $\left._{d}\right)$:

Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega: E \rightarrow \mathbb{R}^{+}$.

Output:

a subset of edges $E^{\prime} \subseteq E$ of maximum weight, s.t. $G^{\prime}=\left(V, E^{\prime}\right)$

- is connected, and
- has maximum degree $\leq d$.
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the problem is in \mathbf{P} for any d (using matching techniques).

Definition of the problem

- Maximum d-Degree-Bounded Connected Subgraph $\left(\right.$ MDBCS $\left._{d}\right)$:

Input:

- an undirected graph $G=(V, E)$,
- an integer $d \geq 2$, and
- a weight function $\omega: E \rightarrow \mathbb{R}^{+}$.

Output:

a subset of edges $E^{\prime} \subseteq E$ of maximum weight, s.t. $G^{\prime}=\left(V, E^{\prime}\right)$

- is connected, and
- has maximum degree $\leq d$.
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the problem is in \mathbf{P} for any d (using matching techniques).
- For fixed $d=2$ it is the well known Longest Path (or Cycle) problem.

Example with $d=3, \omega(e)=1$ for all $e \in E(G)$

Example with $d=3$ (II)

Example with $d=3$ (III)

Example with $d=3$ (IV)

State of the art

To the best of our knowledge, there were no results in the literature except for the case $d=2$, a.k.a. the LoNgest Path problem:

State of the art

To the best of our knowledge, there were no results in the literature except for the case $d=2$, a.k.a. the LoNgest Path problem:

- Approximation algorithms:
$\mathcal{O}\left(\frac{n}{\log n}\right)$-approximation, using the color-coding method.
[N. Alon, R. Yuster and U. Zwick, STOC'94].

Hardness results:
It does not accept any constant-factor approximation.
[D. Karger, R. Motwani and G. Ramkumar, Algorithmica'97]

State of the art

To the best of our knowledge, there were no results in the literature except for the case $d=2$, a.k.a. the LoNgest Path problem:

- Approximation algorithms:
$\mathcal{O}\left(\frac{n}{\log n}\right)$-approximation, using the color-coding method.
[N. Alon, R. Yuster and U. Zwick, STOC'94].
$\mathcal{O}\left(n\left(\frac{\log \log n}{\log n}\right)^{2}\right)$-approximation.
[A. Björklund and T. Husfeldt, SIAM J. Computing'03].
- Hardness results:

It does not accept any constant-factor approximation.
[D. Karger, R. Motwani and G. Ramkumar, Algorithmica'97].

State of the art

To the best of our knowledge, there were no results in the literature except for the case $d=2$, a.k.a. the LoNgest Path problem:

- Approximation algorithms:
$\mathcal{O}\left(\frac{n}{\log n}\right)$-approximation, using the color-coding method.
[N. Alon, R. Yuster and U. Zwick, STOC'94].
$\mathcal{O}\left(n\left(\frac{\log \log n}{\log n}\right)^{2}\right)$-approximation.
[A. Björklund and T. Husfeldt, SIAM J. Computing'03].
- Hardness results:

It does not accept any constant-factor approximation.
[D. Karger, R. Motwani and G. Ramkumar, Algorithmica'97].

Our results

- Approximation algorithms $(n=|V(G)|, m=|E(G)|)$:
- $\min \left\{\frac{n}{2}, \frac{m}{d}\right\}$-approximation algorithm for weighted graphs.
$\min \left\{\frac{m}{\log n}, \frac{n d}{2 \log n}\right\}$-approximation algorithm for unweighted graphs, using color coding.
when G accepts a low-degree spanning tree, in terms of d, then MDBCS_{d} can be approximated within a small constant factor.

Our results

- Approximation algorithms $(n=|V(G)|, m=|E(G)|)$:
- $\min \left\{\frac{n}{2}, \frac{m}{d}\right\}$-approximation algorithm for weighted graphs.
- $\min \left\{\frac{m}{\log n}, \frac{n d}{2 \log n}\right\}$-approximation algorithm for unweighted graphs, using color coding.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS_{d} can be approximated within a small constant factor.
- Hardness results:

For each fixed $d>2$, MDBCS does not accept any
constant-factor approximation in general graphs.

Our results

- Approximation algorithms $(n=|V(G)|, m=|E(G)|)$:
- $\min \left\{\frac{n}{2}, \frac{m}{d}\right\}$-approximation algorithm for weighted graphs.
- $\min \left\{\frac{m}{\log n}, \frac{n d}{2 \log n}\right\}$-approximation algorithm for unweighted graphs, using color coding.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS_{d} can be approximated within a small constant factor.
- Hardness results:
- For each fixed $d>2$, MDBCS $_{d}$ does not accept any constant-factor approximation in general graphs.

Our results

- Approximation algorithms $(n=|V(G)|, m=|E(G)|)$:
- $\min \left\{\frac{n}{2}, \frac{m}{d}\right\}$-approximation algorithm for weighted graphs.
- $\min \left\{\frac{m}{\log n}, \frac{n d}{2 \log n}\right\}$-approximation algorithm for unweighted graphs, using color coding.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS_{d} can be approximated within a small constant factor.
- Hardness results:
- For each fixed $d \geq 2$, MDBCS $_{d}$ does not accept any constant-factor approximation in general graphs.

Our results

- Approximation algorithms $(n=|V(G)|, m=|E(G)|)$:
- $\min \left\{\frac{n}{2}, \frac{m}{d}\right\}$-approximation algorithm for weighted graphs.
- $\min \left\{\frac{m}{\log n}, \frac{n d}{2 \log n}\right\}$-approximation algorithm for unweighted graphs, using color coding.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS_{d} can be approximated within a small constant factor.
- Hardness results:
- For each fixed $d \geq 2$, MDBCS $_{d}$ does not accept any constant-factor approximation in general graphs.

Approximation algorithm for weighted graphs Input: undirected graph $G=(V, E)$, a weight function $\omega: E \rightarrow \mathbb{R}^{+}$, and an integer $d \geq 2$. Let $n=|V|, m=|E|$.
F : set of d heaviest edges in G, with weight $\omega(F)$. W : set of endpoints of those edges. Let $H=(W, F)$.

Approximation algorithm for weighted graphs

 Input: undirected graph $G=(V, E)$, a weight function $\omega: E \rightarrow \mathbb{R}^{+}$, and an integer $d \geq 2$. Let $n=|V|, m=|E|$.F : set of d heaviest edges in G, with weight $\omega(F)$. W : set of endpoints of those edges. Let $H=(W, F)$.

Description of the algorithm: Two cases according to $H=(W, F)$:

Approximation algorithm for weighted graphs Input: undirected graph $G=(V, E)$, a weight function $\omega: E \rightarrow \mathbb{R}^{+}$, and an integer $d \geq 2$. Let $n=|V|, m=|E|$.
F : set of d heaviest edges in G, with weight $\omega(F)$. W : set of endpoints of those edges. Let $H=(W, F)$.

Description of the algorithm: Two cases according to $H=(W, F)$:
\square

Approximation algorithm for weighted graphs Input: undirected graph $G=(V, E)$, a weight function $\omega: E \rightarrow \mathbb{R}^{+}$, and an integer $d \geq 2$. Let $n=|V|, m=|E|$.
F : set of d heaviest edges in G, with weight $\omega(F)$. W : set of endpoints of those edges. Let $H=(W, F)$.

Description of the algorithm: Two cases according to $H=(W, F)$:
(1) If $H=(W, F)$ is connected, the algorithm returns H.

Claim: this yields a $\min \{n / 2, m / d\}$-approximation.
Proof.
Suppose an optimal solution consists of m^{*} edges of total weight ω^{*} Then $A L G=\omega(F) \geq \frac{\omega^{*}}{m^{*}} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^{*} \leq m$ and $m^{*} \leq d n / 2$, we get that ALG If $H=(W, F)$ consists of a collection \mathcal{F} of k connected nomnonents we glise them in $k-1$ nhases

Approximation algorithm for weighted graphs

Input: undirected graph $G=(V, E)$, a weight function $\omega: E \rightarrow \mathbb{R}^{+}$, and an integer $d \geq 2$. Let $n=|V|, m=|E|$.
F : set of d heaviest edges in G, with weight $\omega(F)$. W : set of endpoints of those edges. Let $H=(W, F)$.

Description of the algorithm: Two cases according to $H=(W, F)$:
(1) If $H=(W, F)$ is connected, the algorithm returns H.

Claim: this yields a $\min \{n / 2, m / d\}$-approximation.
Proof.
Suppose an optimal solution consists of m^{*} edges of total weight ω^{*}.
Then $A L G=\omega(F) \geq \frac{\omega^{*}}{m^{*}} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^{*} \leq m$ and $m^{*} \leq d n / 2$, we get that $A L G \geq \frac{\omega^{*}}{m} \cdot d=\frac{\omega^{*}}{m / d}$ and $A L G \geq \frac{\omega^{*}}{d n / 2} \cdot d=\frac{\omega^{*}}{n / 2}$.

$$
\text { (2) If } H=(W, F) \text { consists of a collection } \mathcal{F} \text { of } k \text { connected }
$$

components, we glue them in $k-1$ phases.

Approximation algorithm for weighted graphs

Input: undirected graph $G=(V, E)$, a weight function $\omega: E \rightarrow \mathbb{R}^{+}$, and an integer $d \geq 2$. Let $n=|V|, m=|E|$.
F : set of d heaviest edges in G, with weight $\omega(F)$. W : set of endpoints of those edges. Let $H=(W, F)$.

Description of the algorithm: Two cases according to $H=(W, F)$:
(1) If $H=(W, F)$ is connected, the algorithm returns H.

Claim: this yields a $\min \{n / 2, m / d\}$-approximation.
Proof.
Suppose an optimal solution consists of m^{*} edges of total weight ω^{*}.
Then $A L G=\omega(F) \geq \frac{\omega^{*}}{m^{*}} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^{*} \leq m$ and $m^{*} \leq d n / 2$, we get that $A L G \geq \frac{\omega^{*}}{m} \cdot d=\frac{\omega^{*}}{m / d}$ and $A L G \geq \frac{\omega^{*}}{d n / 2} \cdot d=\frac{\omega^{*}}{n / 2}$.
(2) If $H=(W, F)$ consists of a collection \mathcal{F} of k connected components, we glue them in $k-1$ phases.

Example of the algorithm for weighted graphs

- Given a weighted graph $G=(V, E)$ and an integer $d \ldots$

Example of the algorithm for weighted graphs

$$
H=(W, F)
$$

/

$$
d=6
$$

- Let $H=(W, F)$ be the graph induced by the d heaviest edges.

Example of the algorithm for weighted graphs

$$
H=(W, F)
$$

- Assume H has $k>1$ connected components.

Example of the algorithm for weighted graphs

- We compute the distance in G between each pair of components.

Example of the algorithm for weighted graphs

- We add to H a path between a pair of closest vertices.

Example of the algorithm for weighted graphs

- We repeat these two steps inductively...

Example of the algorithm for weighted graphs

- Until the graph H is connected.

Example of the algorithm for weighted graphs

- The algorithm outputs this graph H.

Analysis of the algorithm

(a) Running time: clearly polynomial.
(b) Correctness:

- The output subgraph is connected.
- Claim: after i phases, $\Delta(H) \leq$

The proof is done by induction. When $i=k-1$ we get $\Delta(H) \leq d$.

Analysis of the algorithm

(a) Running time: clearly polynomial.
(b) Correctness:

- The output subgraph is connected.
- Claim: after i phases, $\Delta(H) \leq d-k+i+1$.

The proof is done by induction. When $i=k-1$ we get $\Delta(H) \leq d$.
(c) Approximation ratio: follows from case (1)

Analysis of the algorithm

(a) Running time: clearly polynomial.
(b) Correctness:

- The output subgraph is connected.
- Claim: after i phases, $\Delta(H) \leq d-k+i+1$. The proof is done by induction. When $i=k-1$ we get $\Delta(H) \leq d$.
(c) Approximation ratio: follows from case (1).

Analysis of the algorithm

(a) Running time: clearly polynomial.
(b) Correctness:

- The output subgraph is connected.
- Claim: after i phases, $\Delta(H) \leq d-k+i+1$.

The proof is done by induction. When $i=k-1$ we get $\Delta(H) \leq d$.
(c) Approximation ratio: follows from case (1).

2- Minimum Subgraph of Minimum Degree $\geq d$

Definition of the problem

- Minimum Subgraph of Minimum Degree $\geq d$ (MSMD ${ }_{d}$):

Input: an undirected graph $G=(V, E)$ and an integer $d \geq 3$.
Output: a subset $S \subseteq V$ with $\delta(G[S]) \geq d$, s.t. $|S|$ is minimum.

- For $d=2$ it is the GIRTH problem (find the length of a shortest

Definition of the problem

- Minimum Subgraph of Minimum Degree $\geq d$ (MSMD ${ }_{d}$):

Input: an undirected graph $G=(V, E)$ and an integer $d \geq 3$.
Output: a subset $S \subseteq V$ with $\delta(G[S]) \geq d$, s.t. $|S|$ is minimum.

- For $d=2$ it is the GIRTH problem (find the length of a shortest cycle), which is in P .
- Motivation: close relation with Dense k-Subgraph problem and Traffic Grooming problem in optical networks.

Definition of the problem

- Minimum Subgraph of Minimum Degree $\geq d$ (MSMD ${ }_{d}$):

Input: an undirected graph $G=(V, E)$ and an integer $d \geq 3$.
Output: a subset $S \subseteq V$ with $\delta(G[S]) \geq d$, s.t. $|S|$ is minimum.

- For $d=2$ it is the GIRTH problem (find the length of a shortest cycle), which is in P .
- Motivation: close relation with Dense k-Subgraph problem and Traffic Grooming problem in optical networks.

Definition of the problem

- Minimum Subgraph of Minimum Degree $\geq d$ (MSMD ${ }_{d}$):

Input: an undirected graph $G=(V, E)$ and an integer $d \geq 3$.
Output: a subset $S \subseteq V$ with $\delta(G[S]) \geq d$, s.t. $|S|$ is minimum.

- For $d=2$ it is the GIRTH problem (find the length of a shortest cycle), which is in P .
- Motivation: close relation with Dense k-Subgraph problem and Traffic Grooming problem in optical networks.

State of the art + our results

- This problem was first introduced in
[O. Amini, I. S. and S. Saurabh, IWPEC'08].
- W[1]-hard in general graphs, for $d \geq 3$.
- FPT in minor-closed classes of graphs.
- Our results:
- MSMD is not in APX for any $d \geq 3$.
- $\mathcal{O}(n / \log n)$-approximation algorithm for minor-closed classes of graphs, using a structural result and dynamic programming.

State of the art + our results

- This problem was first introduced in
[O. Amini, I. S. and S. Saurabh, IWPEC'08].
- W[1]-hard in general graphs, for $d \geq 3$.
- FPT in minor-closed classes of graphs.
- Our results:
- MSMD_{d} is not in APX for any $d \geq 3$.
- $\mathcal{O}(n / \log n)$-approximation algorithm for minor-closed classes of graphs, using a structural result and dynamic programming.

State of the art + our results

- This problem was first introduced in
[O. Amini, I. S. and S. Saurabh, IWPEC'08].
- W[1]-hard in general graphs, for $d \geq 3$.
- FPT in minor-closed classes of graphs.
- Our results:
- MSMD_{d} is not in APX for any $d \geq 3$.
- $\mathcal{O}(n / \log n)$-approximation algorithm for minor-closed classes of graphs, using a structural result and dynamic programming.

Hardness result

Idea of the proof for $d=3$

(1) First we will see that $\mathrm{MSMD}_{3} \notin$ PTAS.
(2) Then we will see that $M S M D_{3} \notin A P X$.
(1) $M S M D_{3}$ is not in PTAS

- Reduction from Vertex Cover:

Instance H of Vertex Cover \rightarrow Instance G of MSMD $_{3}$

- We will see that

PTAS for $G \Rightarrow$ PTAS for H

- Reduction from Vertex Cover:

Instance H of Vertex Cover \rightarrow Instance G of MSMD $_{3}$

- We will see that

$$
\text { PTAS for } G \Rightarrow \text { PTAS for } H
$$

- And so,
\nexists PTAS for MSMD_{3}
- We can suppose $|E(H)|=3 \cdot 2^{m}$ and $\delta(H) \geq 3$.
- Reduction from Vertex Cover:

Instance H of Vertex Cover \rightarrow Instance G of MSMD $_{3}$

- We will see that

$$
\text { PTAS for } G \Rightarrow \text { PTAS for } H
$$

- And so,
\nexists PTAS for $M_{M S M}$
- We can suppose $|E(H)|=3 \cdot 2^{m}$ and $\delta(H) \geq 3$.
- Reduction from Vertex Cover:

Instance H of Vertex Cover \rightarrow Instance G of MSMD $_{3}$

- We will see that

$$
\text { PTAS for } G \Rightarrow \text { PTAS for } H
$$

- And so,
\nexists PTAS for $M_{M S M}$
- We can suppose $|E(H)|=3 \cdot 2^{m}$ and $\delta(H) \geq 3$.

We build a complete ternary tree with $|E(H)|=3 \cdot 2^{m}$ leaves:

$$
E(H)
$$

We add a copy of the set of leaves $E(H)$:

$E(H)$
$E(H)$

We join both sets with a Hamiltonian cycle (for technical reasons):

We add all the vertices of H :

We add the incidence relations between $E(H)$ and $V(H) \rightarrow G$:

(1) MSMD_{3} is not in PTAS

- If we touch a vertex of $G \backslash V(H)$, we have to touch all the vertices of $G \backslash V(H)$
- Thus, MSMD_{3} in G is equivalent to minimize the number of selected vertices in $V(H)$
this is exactly Vertex Cover in H!!
(1) MSMD_{3} is not in PTAS
- If we touch a vertex of $G \backslash V(H)$, we have to touch all the vertices of $G \backslash V(H)$
- Thus, MSMD_{3} in G is equivalent to minimize the number of selected vertices in $V(H)$
\rightarrow this is exactly VERTEX COVER in H !!
- This clearly proves that

(1) MSMD_{3} is not in PTAS
- If we touch a vertex of $G \backslash V(H)$, we have to touch all the vertices of $G \backslash V(H)$
- Thus, MSMD_{3} in G is equivalent to minimize the number of selected vertices in $V(H)$
\rightarrow this is exactly Vertex Cover in H !!
$O P T_{M S M D_{3}}(G)=O P T_{\mathrm{VC}}(H)+|V(G \backslash V(H))|=$ $=O P T_{\mathrm{VC}}(H)+9 \cdot 2^{m}$
- This clearly proves that
(1) MSMD_{3} is not in PTAS
- If we touch a vertex of $G \backslash V(H)$, we have to touch all the vertices of $G \backslash V(H)$
- Thus, MSMD_{3} in G is equivalent to minimize the number of selected vertices in $V(H)$
\rightarrow this is exactly Vertex Cover in H!!
- Thus,

$$
\begin{aligned}
O P T_{\mathrm{MSMD}_{3}}(G) & =O P T_{\mathrm{Vc}}(H)+|V(G \backslash V(H))|= \\
= & O P T_{\mathrm{VC}}(H)+9 \cdot 2^{m}
\end{aligned}
$$

- This clearly proves that

PTAS for $\mathrm{MSMD}_{3} \Rightarrow$ PTAS for Vertex Cover

- Let $\alpha>1$ be the factor of inapproximability of MSMD_{3}
- We use a technique called error amplification:
- We build a sequence of families of graphs \mathcal{G}_{k}, such that MSMD_{3} is hard to approximate in \mathcal{G}_{k} within a factor α^{k}
- This proves that the problem is not in APX
(for any constant $C, \exists k>0$ such that $\alpha^{k}>C$)

(2) MSMD_{3} is not in APX

- Let $\alpha>1$ be the factor of inapproximability of MSMD_{3}
- We use a technique called error amplification:
- We build a sequence of families of graphs \mathcal{G}_{k}, such that MSMD_{3} is hard to approximate in \mathcal{G}_{k} within a factor α^{k}
- This proves that the problem is not in APX (for any constant $C, \exists k>0$ such that $\alpha^{k}>C$)
- Let $G_{1}=G$.

We explain the construction of G_{2} : first take our graph G and..

(2) MSMD_{3} is not in APX

- Let $\alpha>1$ be the factor of inapproximability of MSMD_{3}
- We use a technique called error amplification:
- We build a sequence of families of graphs \mathcal{G}_{k}, such that MSMD_{3} is hard to approximate in \mathcal{G}_{k} within a factor α^{k}
- This proves that the problem is not in APX (for any constant $C, \exists k>0$ such that $\alpha^{k}>C$)
- Let $G_{1}=G$.

We explain the construction of G_{2} : first take our graph G and...

(2) MSMD_{3} is not in APX

- Let $\alpha>1$ be the factor of inapproximability of MSMD_{3}
- We use a technique called error amplification:
- We build a sequence of families of graphs \mathcal{G}_{k}, such that MSMD_{3} is hard to approximate in \mathcal{G}_{k} within a factor α^{k}
- This proves that the problem is not in APX (for any constant $C, \exists k>0$ such that $\alpha^{k}>C$)
- Let $G_{1}=G$. We explain the construction of G_{2} : first take our graph G and...

For any vertex v (note its degree by d_{v}):

We will replace the vertex v with a graph G_{v}, built as follows:

We begin by placing a copy of G (described before):

We select d_{v} vertices of degree 3 in $T \subset G$:

We replace each of these vertices x_{i} with a C_{4} :

In each C_{4}, we join 3 of the vertices to the neighbors of x_{i} :

We join the d_{v} vertices of degree 2 to the d_{v} neighbors of v :

This construction for all $v \in G$ defines G_{2} :

- Once a vertex in one G_{v} is chosen $\rightarrow \mathrm{MSMD}_{3}$ in G_{v} (which is hard up to a constant α)

- But minimize the number of v 's for which we touch $G_{v} \rightarrow$ MSMD_{3} in G (which is also hard up to a constant α)

- Thus, in G_{2} the problem is hard to approximate up to a factor
- Inductively we prove that in G_{k} the problem is hard to approximate up to a factor α

(2) MSMD_{3} is not in APX

- Once a vertex in one G_{v} is chosen $\rightarrow \mathrm{MSMD}_{3}$ in G_{v} (which is hard up to a constant α)
- But minimize the number of v 's for which we touch $G_{v} \rightarrow$ MSMD_{3} in G (which is also hard up to a constant α)
- Thus, in G_{2} the problem is hard to approximate up to a factor
- Inductively we prove that in G_{k} the problem is hard to approximate up to a factor α^{k}

(2) MSMD_{3} is not in APX

- Once a vertex in one G_{v} is chosen $\rightarrow \mathrm{MSMD}_{3}$ in G_{v} (which is hard up to a constant α)
- But minimize the number of v 's for which we touch $G_{v} \rightarrow$ MSMD_{3} in G (which is also hard up to a constant α)
- Thus, in G_{2} the problem is hard to approximate up to a factor $\alpha \cdot \alpha=\alpha^{2}$
- Inductively we prove that in G_{k} the problem is hard to approximate up to a factor α^{k}

Approximation algorithm for minor free graphs

Recall: graph minors

- H is a contraction of $G\left(H \preceq_{c} G\right)$ if H occurs from G after applying a series of edge contractions.
- H is a minor of $G\left(H \preceq_{m} G\right)$ if H is the contraction of some subgraph of G.

Recall: graph minors

- H is a contraction of $G\left(H \preceq_{c} G\right)$ if H occurs from G after applying a series of edge contractions.
- H is a minor of $G\left(H \preceq_{m} G\right)$ if H is the contraction of some subgraph of G.
- A graph class \mathcal{G} is minor closed if every minor of a graph in \mathcal{G} is again in \mathcal{G}.
- A graph class \mathcal{G} is H-minor-free (or, excludes H as a minor) if no graph in \mathcal{G} contains H as a minor.

Recall: graph minors

- H is a contraction of $G\left(H \preceq_{c} G\right)$ if H occurs from G after applying a series of edge contractions.
- H is a minor of $G\left(H \preceq_{m} G\right)$ if H is the contraction of some subgraph of G.
- A graph class \mathcal{G} is minor closed if every minor of a graph in \mathcal{G} is again in \mathcal{G}.
- A graph class \mathcal{G} is H-minor-free (or, excludes H as a minor) if no graph in \mathcal{G} contains H as a minor.

Recall: graph minors

- H is a contraction of $G\left(H \preceq_{c} G\right)$ if H occurs from G after applying a series of edge contractions.
- H is a minor of $G\left(H \preceq_{m} G\right)$ if H is the contraction of some subgraph of G.
- A graph class \mathcal{G} is minor closed if every minor of a graph in \mathcal{G} is again in \mathcal{G}.
- A graph class \mathcal{G} is H-minor-free (or, excludes H as a minor) if no graph in \mathcal{G} contains H as a minor.

The problem is in P for graphs of small treewidth

Lemma

Let G be a graph on n vertices with treewidth at most t, and let d be a positive integer. Then in time $\mathcal{O}\left((d+1)^{t}(t+1)^{d^{2}} n\right)$ we can either - find a smallest subgraph of minimum degree at least d in G, or - conclude that no such subgraph exists.

The problem is in P for graphs of small treewidth

Lemma

Let G be a graph on n vertices with treewidth at most t, and let d be a positive integer. Then in time $\mathcal{O}\left((d+1)^{t}(t+1)^{d^{2}} n\right)$ we can either - find a smallest subgraph of minimum degree at least d in G, or

- conclude that no such subgraph exists.

Corollary

Let G be an n-vertex graph with treewidth $\mathcal{O}(\log n)$, and let d be a positive integer. Then in polynomial time one can either

- find a smallest subgraph of minimum degree at least d in G, or
- conclude that no such subgraph exists.

Nice partition of M-minor-free graphs

Theorem

For a fixed graph M, there is a constant c_{M} such that for any integer $k \geq 1$ and for every M-minor-free graph G, the vertices of G can be partitioned into $k+1$ sets such that any k of the sets induce a graph of treewidth at most $c_{M} k$.
Furthermore, such a partition can be found in polynomial time.
[E. Demaine, M.T. Hajiaghayi and K.C. Kawarabayashi, FOCS’05]

Approximation algorithm for M-minor-free graphs

(1) Relying on the previous Theorem, partition $V(G)$ in polynomial time into $\log n+1$ sets $V_{0}, \ldots, V_{\log n}$ such that any $\log n$ of the sets induce a graph of treewidth at most $c_{M} \log n$, where c_{M} is a constant depending only on the excluded graph M.
(2) Run the dynamic programming algorithm of the Lemma on all the subgraphs $G_{i}=G\left[V \backslash V_{i}\right]$ of $\log n$ sets, $i=0, \ldots, \log n$.

Approximation algorithm for M-minor-free graphs

(1) Relying on the previous Theorem, partition $V(G)$ in polynomial time into $\log n+1$ sets $V_{0}, \ldots, V_{\log n}$ such that any $\log n$ of the sets induce a graph of treewidth at most $c_{M} \log n$, where c_{M} is a constant depending only on the excluded graph M.
(2) Run the dynamic programming algorithm of the Lemma on all the subgraphs $G_{i}=G\left[V \backslash V_{i}\right]$ of $\log n$ sets, $i=0, \ldots, \log n$.
(3) This procedure finds all the solutions of size at most log n.

Approximation algorithm for M-minor-free graphs

(1) Relying on the previous Theorem, partition $V(G)$ in polynomial time into $\log n+1$ sets $V_{0}, \ldots, V_{\log n}$ such that any $\log n$ of the sets induce a graph of treewidth at most $c_{M} \log n$, where c_{M} is a constant depending only on the excluded graph M.
(2) Run the dynamic programming algorithm of the Lemma on all the subgraphs $G_{i}=G\left[V \backslash V_{i}\right]$ of $\log n$ sets, $i=0, \ldots, \log n$.
(3) This procedure finds all the solutions of size at most $\log n$.
(4) If no solution is found, output the whole graph G.

Approximation algorithm for M-minor-free graphs

(1) Relying on the previous Theorem, partition $V(G)$ in polynomial time into $\log n+1$ sets $V_{0}, \ldots, V_{\log n}$ such that any $\log n$ of the sets induce a graph of treewidth at most $c_{M} \log n$, where c_{M} is a constant depending only on the excluded graph M.
(2) Run the dynamic programming algorithm of the Lemma on all the subgraphs $G_{i}=G\left[V \backslash V_{i}\right]$ of $\log n$ sets, $i=0, \ldots, \log n$.
(3) This procedure finds all the solutions of size at most $\log n$.
(4) If no solution is found, output the whole graph G.

Approximation algorithm for M-minor-free graphs

(1) Relying on the previous Theorem, partition $V(G)$ in polynomial time into $\log n+1$ sets $V_{0}, \ldots, V_{\log n}$ such that any $\log n$ of the sets induce a graph of treewidth at most $c_{M} \log n$, where c_{M} is a constant depending only on the excluded graph M.
(2) Run the dynamic programming algorithm of the Lemma on all the subgraphs $G_{i}=G\left[V \backslash V_{i}\right]$ of $\log n$ sets, $i=0, \ldots, \log n$.
(3) This procedure finds all the solutions of size at most $\log n$.
(4) If no solution is found, output the whole graph G.

This algorithm provides an $\mathcal{O}(n / \log n)$-approximation for $M S M D_{d}$ in minor-free graphs, for all $d \geq 3$.

Approximation algorithm for M-minor-free graphs

(1) Relying on the previous Theorem, partition $V(G)$ in polynomial time into $\log n+1$ sets $V_{0}, \ldots, V_{\log n}$ such that any $\log n$ of the sets induce a graph of treewidth at most $c_{M} \log n$, where c_{M} is a constant depending only on the excluded graph M.
(2) Run the dynamic programming algorithm of the Lemma on all the subgraphs $G_{i}=G\left[V \backslash V_{i}\right]$ of $\log n$ sets, $i=0, \ldots, \log n$.
(3) This procedure finds all the solutions of size at most $\log n$.
(4) If no solution is found, output the whole graph G.

This algorithm provides an $\mathcal{O}(n / \log n)$-approximation for MSMD_{d} in minor-free graphs, for all $d \geq 3$.
The running time of the algorithm is polynomial in n, since in step (2), for each G_{i}, the dynamic programming algorithm runs in $\mathcal{O}\left((d+1)^{t_{i}}\left(t_{i}+1\right)^{d^{2}} n\right)$ time, where t_{i} is the treewidth of G_{i}, which is at most $c_{M} \log n$.

3- Dual Degree-Dense k-SubGRAPh (DDDkS)

Definition of the problem + results

- Dual Degree-Dense k-Subgraph (DDDkS):

Input: an undirected graph $G=(V, E)$ and a positive integer k. Output: a subset $S \subseteq V$ with $|S| \leq k$, s.t. $\delta(G[S])$ is maximum.

Definition of the problem + results

- Dual Degree-Dense k-Subgraph (DDDkS):

Input: an undirected graph $G=(V, E)$ and a positive integer k.
Output: a subset $S \subseteq V$ with $|S| \leq k$, s.t. $\delta(G[S])$ is maximum.

- It is the natural dual version of the preceding problem.

Definition of the problem + results

- Dual Degree-Dense k-Subgraph (DDDkS):

Input: an undirected graph $G=(V, E)$ and a positive integer k.
Output: a subset $S \subseteq V$ with $|S| \leq k$, s.t. $\delta(G[S])$ is maximum.

- It is the natural dual version of the preceding problem.
- Randomized $\mathcal{O}(\sqrt{n} \log n)$-approximation algorithm in general graphs.
- Deterministic $\mathcal{O}\left(n^{\delta}\right)$-approximation algorithm in general graphs, for some universal constant $\delta<1 / 3$.

Definition of the problem + results

- Dual Degree-Dense k-Subgraph (DDDkS):

Input: an undirected graph $G=(V, E)$ and a positive integer k.
Output: a subset $S \subseteq V$ with $|S| \leq k$, s.t. $\delta(G[S])$ is maximum.

- It is the natural dual version of the preceding problem.
- Our results:
- Randomized $\mathcal{O}(\sqrt{n} \log n)$-approximation algorithm in general graphs.
- Deterministic $\mathcal{O}\left(n^{\delta}\right)$-approximation algorithm in general graphs, for some universal constant $\delta<1 / 3$.

Further Research

- Problem 1:
- Approximation algorithms and hardness results in general graphs.
- Open: closing the huge complexity gap of MDBCS ${ }_{d}, d \geq 2$.
- Problem 2:
- Hardness results and an approximation algorithm in minor-free graphs.

Further Research

- Problem 1:
- Approximation algorithms and hardness results in general graphs.
- Open: closing the huge complexity gap of $\mathrm{MDBCS}_{d}, d \geq 2$.
- Problem 2:
- Hardness results and an approximation algorithm in minor-free graphs.

Further Research

- Problem 1:
- Approximation algorithms and hardness results in general graphs.
- Open: closing the huge complexity gap of $\mathrm{MDBCS}_{d}, d \geq 2$.
- Problem 2:
- Hardness results and an approximation algorithm in minor-free graphs.
- Open: finding approximation algorithms in general graphs for $\mathrm{MSMD}_{d}, d \geq 3$.
- Problem 3:
- Approximation algorithms in general graphs.

Further Research

- Problem 1:
- Approximation algorithms and hardness results in general graphs.
- Open: closing the huge complexity gap of $\mathrm{MDBCS}_{d}, d \geq 2$.
- Problem 2:
- Hardness results and an approximation algorithm in minor-free graphs.
- Open: finding approximation algorithms in general graphs for $\mathrm{MSMD}_{d}, d \geq 3$.
- Problem 3:
- Approximation algorithms in general graphs. - Open: hardness results for DDDkS, $k \geq 3$.

Further Research

- Problem 1:
- Approximation algorithms and hardness results in general graphs.
- Open: closing the huge complexity gap of $\mathrm{MDBCS}_{d}, d \geq 2$.
- Problem 2:
- Hardness results and an approximation algorithm in minor-free graphs.
- Open: finding approximation algorithms in general graphs for $\mathrm{MSMD}_{d}, d \geq 3$.
- Problem 3:
- Approximation algorithms in general graphs.
- Open: hardness results for DDDkS, $k \geq 3$.

Further Research

- Problem 1:
- Approximation algorithms and hardness results in general graphs.
- Open: closing the huge complexity gap of $\mathrm{MDBCS}_{d}, d \geq 2$.
- Problem 2:
- Hardness results and an approximation algorithm in minor-free graphs.
- Open: finding approximation algorithms in general graphs for $\mathrm{MSMD}_{d}, d \geq 3$.
- Problem 3:
- Approximation algorithms in general graphs.
- Open: hardness results for DDD $k S, k \geq 3$.

Thanks!

