Degree-Constrained Subgraph Problems: Hardness and Approximation

Omid Amini - Max Planck (Germany)

David Peleg - Weizmann Inst. (Israel)

Stéphane Perénnes - CNRS (France)

Ignasi Sau - CNRS (France) + UPC (Spain)

Saket Saurabh - Univ. Bergen (Norway)

Mascotte Project - INRIA/CNRS-I3S/UNSA - FRANCE Applied Mathematics IV Department of UPC - SPAIN

Seminar M.P.L.A - NKU $A\theta\eta\nu\alpha$ - November 28th, 2008

Outline of the talk (ALGO/WAOA'08)

- Introduction / Preliminaries
- Problem 1
 - Definition + results
 - An approximation algorithm
- Problem 2
 - Definition + results
 - A hardness result
 - An approximation algorithm
- Problem 3
 - Definition + results
- Further research

Degree-Constrained Subgraph Problems

• A typical Degree-Constrained Subgraph Problem:

Input:

- ▶ a (weighted or unweighted) graph G, and
- ▶ an integer d.

- ▶ a (connected) subgraph H of G,
- ▶ satisfying some degree constraints ($\Delta(H) \leq d$ or $\delta(H) \geq d$),
- ▶ and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

A typical Degree-Constrained Subgraph Problem:

Input:

- ▶ a (weighted or unweighted) graph G, and
- ▶ an integer d.

- a (connected) subgraph H of G,
- ▶ satisfying some degree constraints $(\Delta(H) \leq d$ or $\delta(H) \geq d$),
- ▶ and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

A typical Degree-Constrained Subgraph Problem:

Input:

- ▶ a (weighted or unweighted) graph G, and
- ▶ an integer d.

- a (connected) subgraph H of G,
- ▶ satisfying some degree constraints $(\Delta(H) \leq d$ or $\delta(H) \geq d$),
- ▶ and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

A typical Degree-Constrained Subgraph Problem:

Input:

- ▶ a (weighted or unweighted) graph G, and
- ▶ an integer *d*.

- a (connected) subgraph H of G,
- ▶ satisfying some degree constraints $(\Delta(H) \leq d)$ or $\delta(H) \geq d$,
- ▶ and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

A typical Degree-Constrained Subgraph Problem:

Input:

- ▶ a (weighted or unweighted) graph G, and
- ▶ an integer d.

- a (connected) subgraph H of G,
- ▶ satisfying some degree constraints ($\Delta(H) \leq d$ or $\delta(H) \geq d$),
- ▶ and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

• Given a (typically NP-hard) *minimization* problem Π , we say that ALG is an α -approximation algorithm for Π (with $\alpha \geq 1$) if for any instance I of Π ,

$$ALG(I) \leq \alpha \cdot OPT(I)$$
.

• Example:

MINIMUM VERTEX COVER

Input: An undirected graph G = (V, E).

- Approximation algorithm for MINIMUM VERTEX COVER:
 output a maximal matching.
- This algorithm is a 2-approximation for MINIMUM VERTEX COVER.

• Given a (typically NP-hard) *minimization* problem Π , we say that ALG is an α -approximation algorithm for Π (with $\alpha \geq 1$) if for any instance I of Π ,

$$ALG(I) \leq \alpha \cdot OPT(I)$$
.

• Example:

MINIMUM VERTEX COVER

Input: An undirected graph G = (V, E).

- Approximation algorithm for MINIMUM VERTEX COVER:
 output a maximal matching.
- This algorithm is a 2-approximation for MINIMUM VERTEX COVER.

• Given a (typically NP-hard) *minimization* problem Π , we say that ALG is an α -approximation algorithm for Π (with $\alpha \geq 1$) if for any instance I of Π ,

$$ALG(I) \leq \alpha \cdot OPT(I)$$
.

Example:

MINIMUM VERTEX COVER

Input: An undirected graph G = (V, E).

- Approximation algorithm for MINIMUM VERTEX COVER:
 output a maximal matching.
- This algorithm is a 2-approximation for MINIMUM VERTEX COVER.

• Given a (typically NP-hard) *minimization* problem Π , we say that ALG is an α -approximation algorithm for Π (with $\alpha \geq 1$) if for any instance I of Π ,

$$ALG(I) \leq \alpha \cdot OPT(I)$$
.

Example:

MINIMUM VERTEX COVER

Input: An undirected graph G = (V, E).

- Approximation algorithm for MINIMUM VERTEX COVER:
 output a maximal matching.
- This algorithm is a 2-approximation for MINIMUM VERTEX COVER.

Preliminaries (II): hardness of approximation

Class APX (Approximable):

an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

Example: MINIMUM VERTEX COVER

• Class PTAS (Polynomial-Time Approximation Scheme):

an NP-hard optimization problem is in PTAS if it can be approximated within a constant factor $1 + \varepsilon$, for all $\varepsilon > 0$ (the best one can hope for an NP-complete problem).

Example: MAXIMUM KNAPSACK

We know that

 $\mathsf{PTAS} \varsubsetneq \mathsf{APX} \quad (\mathsf{again}, \mathsf{Min} \; \mathsf{Set} \; \mathsf{Cover!})$

ullet Thus, if Π is an optimization problem

 Π is APX-hard $\Rightarrow \Pi \notin PTAS$

Preliminaries (II): hardness of approximation

Class APX (Approximable):

an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

Example: MINIMUM VERTEX COVER

Class PTAS (Polynomial-Time Approximation Scheme):

an NP-hard optimization problem is in PTAS if it can be approximated within a constant factor $1 + \varepsilon$, for all $\varepsilon > 0$ (the best one can hope for an NP-complete problem).

Example: MAXIMUM KNAPSACK

We know that

PTAS ⊊ APX (again, MIN SET COVER!)

• Thus, if Π is an optimization problem:

 Π is APX-hard $\Rightarrow \Pi \notin PTAS$

Preliminaries (II): hardness of approximation

• Class APX (Approximable):

an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

Example: MINIMUM VERTEX COVER

Class PTAS (Polynomial-Time Approximation Scheme):

an NP-hard optimization problem is in PTAS if it can be approximated within a constant factor $1 + \varepsilon$, for all $\varepsilon > 0$ (the best one can hope for an NP-complete problem).

Example: MAXIMUM KNAPSACK

We know that

PTAS ⊊ APX (again, MIN SET COVER!)

• Thus, if Π is an optimization problem:

 Π is APX-hard $\Rightarrow \Pi \notin PTAS$

d-Degree-Bounded

1- MAXIMUM

CONNECTED SUBGRAPH

 MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_d):

Input:

- ▶ an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : E \to \mathbb{R}^+$.

Output:

- ▶ is connected, and
- ▶ has maximum degree ≤ d.
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the well known Longest Path (or Cycle)

 MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_d):

Input:

- ▶ an undirected graph G = (V, E),
- ▶ an integer $d \ge 2$, and
- a weight function $\omega : E \to \mathbb{R}^+$.

Output:

- is connected, and
- has maximum degree ≤ d.
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE) problem.

 MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_d):

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : E \to \mathbb{R}^+$.

Output:

- ▶ is **connected**, and
- has maximum degree ≤ d.
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE) problem.

 MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_d):

Input:

- ▶ an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : E \to \mathbb{R}^+$.

Output:

- ▶ is connected, and
- has maximum degree ≤ d.
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the well known Longest Path (or Cycle) problem.

 MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_d):

Input:

- an undirected graph G = (V, E),
- an integer d > 2, and
- a weight function $\omega : E \to \mathbb{R}^+$.

Output:

- is connected, and
- has maximum degree ≤ d.
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the problem is in **P** for any *d* (using matching techniques).
- For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE) problem.

Example with d = 3, $\omega(e) = 1$ for all $e \in E(G)$

Example with d = 3 (II)

Example with d = 3 (III)

Example with d = 3 (IV)

To the best of our knowledge, there were no results in the literature except for the case d=2, a.k.a. the **Longest Path** problem:

- Approximation algorithms:
 - $\mathcal{O}\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method.

[N. Alon, R. Yuster and U. Zwick, STOC'94].

$$\mathcal{O}\left(n\left(\frac{\log\log n}{\log n}\right)^2\right)$$
-approximation.

[A. Björklund and T. Husfeldt, SIAM J. Computing'03].

- Hardness results:
 - It does not accept any constant-factor approximation.
 - [D. Karger, R. Motwani and G. Ramkumar, Algorithmica'97]

To the best of our knowledge, there were no results in the literature except for the case d=2, a.k.a. the **Longest Path** problem:

Approximation algorithms:

 $O\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method.

[N. Alon, R. Yuster and U. Zwick, STOC'94].

$$\mathcal{O}\left(n\left(\frac{\log\log n}{\log n}\right)^2\right)$$
-approximation.

[A. Björklund and T. Husfeldt, SIAM J. Computing'03].

Hardness results:

It does not accept *any* constant-factor approximation.

D. Karger, R. Motwani and G. Ramkumar, Algorithmica'97]

To the best of our knowledge, there were no results in the literature except for the case d = 2, a.k.a. the **Longest Path** problem:

Approximation algorithms:

 $O\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method.

[N. Alon, R. Yuster and U. Zwick, STOC'94].

$$O\left(n\left(\frac{\log\log n}{\log n}\right)^2\right)$$
-approximation.

[A. Björklund and T. Husfeldt, SIAM J. Computing'03].

Hardness results:

It does not accept *any* constant-factor approximation.

[D. Karger, B. Motwapi and G. Bamkumar, Algorithmics

D. Karger, R. Motwani and G. Ramkumar, Algorithmica'9/J.

To the best of our knowledge, there were no results in the literature except for the case d=2, a.k.a. the **Longest Path** problem:

Approximation algorithms:

$$\mathcal{O}\left(\frac{n}{\log n}\right)$$
-approximation, using the **color-coding** method.

[N. Alon, R. Yuster and U. Zwick, STOC'94].

$$\mathcal{O}\left(n\left(\frac{\log\log n}{\log n}\right)^2\right)$$
-approximation.

[A. Björklund and T. Husfeldt, SIAM J. Computing'03].

Hardness results:

It does not accept *any* constant-factor approximation.

[D. Karger, R. Motwani and G. Ramkumar, Algorithmica'97].

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - ▶ $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
 - ▶ $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs, using *color coding*.
 - when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - ▶ $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
 - ▶ $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs, using *color coding*.
 - when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - ▶ $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
 - ▶ $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs, using *color coding*.
 - ▶ when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - ▶ $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
 - ▶ $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs, using *color coding*.
 - ▶ when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - ▶ $\min\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for **weighted** graphs.
 - ▶ $\min\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs, using *color coding*.
 - ▶ when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

Approximation algorithm for weighted graphs

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|.

F: set of d heaviest edges in G, with weight $\omega(F)$. W: set of endpoints of those edges. Let H = (W, F)

Description of the algorithm: Two cases according to H = (W, F):

(1) If H = (W, F) is connected, the algorithm returns H Claim: this yields a min $\{n/2, m/d\}$ -approximation.

Proof

Suppose an optimal solution consists of m^* edges of total weight ω^* . Then $ALG = \omega(F) \geq \frac{\omega^*}{m^*} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^* \leq m$ and $m^* \leq dn/2$, we get that $ALG \geq \frac{\omega^*}{m} \cdot d = \frac{\omega^*}{m/d}$ and $ALG \geq \frac{\omega^*}{dn/2} \cdot d = \frac{\omega^*}{n/2}$.

(2) If H = (W, F) consists of a collection F of k connected components, we glue them in k = 1 phases.

Approximation algorithm for weighted graphs

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|.

F: set of d heaviest edges in G, with weight $\omega(F)$. W: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases according to H = (W, F):

(1) If H = (W, F) is connected, the algorithm returns H Claim: this yields a min $\{n/2, m/d\}$ -approximation.

Suppose an optimal solution consists of m^* edges of total weight ω^* . Then $ALG = \omega(F) \geq \frac{\omega^*}{m^*} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^* \leq m$ and $m^* \leq dn/2$, we get that $ALG \geq \frac{\omega^*}{m} \cdot d = \frac{\omega^*}{m/d}$ and $ALG \geq \frac{\omega^*}{dn/2} \cdot d = \frac{\omega^*}{n/2}$.

(2) If H = (W, F) consists of a collection F of k connected components, we glue them in k - 1 phases.

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|.

F: set of d heaviest edges in G, with weight $\omega(F)$. W: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases according to H = (W, F):

(1) If H = (W, F) is connected, the algorithm returns H. Claim: this yields a min $\{n/2, m/d\}$ -approximation.

Proof.

Suppose an optimal solution consists of m^* edges of total weight ω^* . Then $ALG = \omega(F) \geq \frac{\omega^*}{m^*} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^* \leq m$ and $m^* \leq dn/2$, we get that $ALG \geq \frac{\omega^*}{m} \cdot d = \frac{\omega^*}{m/d}$ and $ALG \geq \frac{\omega^*}{dn/2} \cdot d = \frac{\omega^*}{n/2}$.

(2) If H = (W, F) consists of a collection F of k connected components, we glue them in k - 1 phases.

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|.

F: set of d heaviest edges in G, with weight $\omega(F)$. W: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases according to H = (W, F):

(1) If H = (W, F) is connected, the algorithm returns H. Claim: this yields a min $\{n/2, m/d\}$ -approximation.

Proof.

Suppose an optimal solution consists of m^* edges of total weight ω^* . Then $ALG = \omega(F) \geq \frac{\omega^*}{m^*} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^* \leq m$ and $m^* \leq dn/2$, we get that $ALG \geq \frac{\omega^*}{m} \cdot d = \frac{\omega^*}{m/d}$ and $ALG \geq \frac{\omega^*}{dn/2} \cdot d = \frac{\omega^*}{n/2}$.

(2) If H = (W, F) consists of a collection F of k connected components, we glue them in k - 1 phases.

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|.

F: set of d heaviest edges in G, with weight $\omega(F)$.

W: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases according to H = (W, F):

(1) If H = (W, F) is connected, the algorithm returns H. Claim: this yields a min $\{n/2, m/d\}$ -approximation.

Proof.

Suppose an optimal solution consists of m^* edges of total weight ω^* . Then $ALG = \omega(F) \geq \frac{\omega^*}{m^*} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^* \leq m$ and $m^* \leq dn/2$, we get that $ALG \geq \frac{\omega^*}{m} \cdot d = \frac{\omega^*}{m/d}$ and $ALG \geq \frac{\omega^*}{dn/2} \cdot d = \frac{\omega^*}{n/2}$.

(2) If H = (W, F) consists of a collection \mathcal{F} of k connected components, we *glue* them in k-1 phases.

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|.

F: set of d heaviest edges in G, with weight $\omega(F)$. W: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases according to H = (W, F):

(1) If H = (W, F) is connected, the algorithm returns H. Claim: this yields a min $\{n/2, m/d\}$ -approximation.

Proof.

Suppose an optimal solution consists of m^* edges of total weight ω^* . Then $ALG = \omega(F) \geq \frac{\omega^*}{m^*} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^* \leq m$ and $m^* \leq dn/2$, we get that $ALG \geq \frac{\omega^*}{m} \cdot d = \frac{\omega^*}{m/d}$ and $ALG \geq \frac{\omega^*}{dn/2} \cdot d = \frac{\omega^*}{n/2}$.

(2) If H = (W, F) consists of a collection \mathcal{F} of k connected components, we *glue* them in k-1 phases.

• Given a weighted graph G = (V, E) and an integer d...

• Let H = (W, F) be the graph induced by the d heaviest edges.

Assume H has k > 1 connected components.

• We compute the distance in *G* between each pair of components.

• We add to *H* a path between a pair of closest vertices.

We repeat these two steps inductively...

• Until the graph *H* is connected.

• The algorithm outputs this graph *H*.

- (a) Running time: clearly polynomial.
- (b) Correctness:
 - ► The output subgraph is connected.
 - ▶ Claim: after i phases, $\Delta(H) \le d k + i + 1$. The proof is done by induction. When i = k - 1 we get $\Delta(H) \le d$
- (c) Approximation ratio: follows from case (1).

(a) Running time: clearly polynomial.

(b) Correctness:

- The output subgraph is connected.
- ▶ Claim: after i phases, $\Delta(H) \le d k + i + 1$. The proof is done by induction. When i = k - 1 we get $\Delta(H) \le d$.
- (c) Approximation ratio: follows from case (1).

(a) Running time: clearly polynomial.

(b) Correctness:

- ▶ The output subgraph is connected.
- ▶ Claim: after i phases, $\Delta(H) \le d k + i + 1$. The proof is done by induction. When i = k - 1 we get $\Delta(H) \le d$.
- **(c) Approximation ratio**: follows from case (1).

(a) Running time: clearly polynomial.

(b) Correctness:

- ► The output subgraph is connected.
- ▶ Claim: after i phases, $\Delta(H) \le d k + i + 1$. The proof is done by induction. When i = k - 1 we get $\Delta(H) \le d$.

(c) Approximation ratio: follows from case (1).

2- MINIMUM SUBGRAPH

OF MINIMUM DEGREE $\geq d$

• MINIMUM SUBGRAPH OF MINIMUM DEGREE $\geq d$ (MSMD_d):

Input: an undirected graph G = (V, E) and an integer $d \ge 3$. **Output:** a subset $S \subseteq V$ with $\delta(G[S]) \ge d$, s.t. |S| is minimum

- For d = 2 it is the GIRTH problem (find the length of a shortest cycle), which is in P.
- Motivation: close relation with DENSE k-SUBGRAPH problem and TRAFFIC GROOMING problem in optical networks.

• MINIMUM SUBGRAPH OF MINIMUM DEGREE $\geq d$ (MSMD_d):

Input: an undirected graph G = (V, E) and an integer $d \ge 3$. **Output:** a subset $S \subseteq V$ with $\delta(G[S]) \ge d$, s.t. |S| is minimum.

- For d = 2 it is the GIRTH problem (find the length of a shortest cycle), which is in P.
- Motivation: close relation with DENSE k-SUBGRAPH problem and TRAFFIC GROOMING problem in optical networks.

• MINIMUM SUBGRAPH OF MINIMUM DEGREE $\geq d$ (MSMD_d):

Input: an undirected graph G = (V, E) and an integer $d \ge 3$. **Output:** a subset $S \subseteq V$ with $\delta(G[S]) \ge d$, s.t. |S| is minimum.

- For d=2 it is the GIRTH problem (find the length of a shortest cycle), which is in P.
- Motivation: close relation with DENSE k-Subgraph problem and TRAFFIC GROOMING problem in optical networks.

• MINIMUM SUBGRAPH OF MINIMUM DEGREE $\geq d$ (MSMD_d):

Input: an undirected graph G = (V, E) and an integer $d \ge 3$. **Output:** a subset $S \subseteq V$ with $\delta(G[S]) \ge d$, s.t. |S| is minimum.

- For d=2 it is the GIRTH problem (find the length of a shortest cycle), which is in P.
- Motivation: close relation with DENSE k-SUBGRAPH problem and TRAFFIC GROOMING problem in optical networks.

State of the art + our results

- This problem was first introduced in [O. Amini, I. S. and S. Saurabh, IWPEC'08].
 - ▶ W[1]-hard in general graphs, for $d \ge 3$.
 - FPT in minor-closed classes of graphs.
- Our results:
 - ▶ MSMD_d is not in APX for any $d \ge 3$.
 - O(n/log n)-approximation algorithm for minor-closed classes of graphs, using a structural result and dynamic programming.

State of the art + our results

- This problem was first introduced in [O. Amini, I. S. and S. Saurabh, IWPEC'08].
 - ▶ W[1]-hard in general graphs, for $d \ge 3$.
 - FPT in minor-closed classes of graphs.
- Our results:
 - ▶ $MSMD_d$ is not in APX for any $d \ge 3$.
 - \triangleright $\mathcal{O}(n/\log n)$ -approximation algorithm for minor-closed classes of graphs, using a structural result and dynamic programming.

State of the art + our results

- This problem was first introduced in [O. Amini, I. S. and S. Saurabh, IWPEC'08].
 - ▶ W[1]-hard in general graphs, for $d \ge 3$.
 - FPT in minor-closed classes of graphs.
- Our results:
 - ▶ $MSMD_d$ is not in APX for any $d \ge 3$.
 - \triangleright $\mathcal{O}(n/\log n)$ -approximation algorithm for minor-closed classes of graphs, using a structural result and dynamic programming.

Hardness result

Idea of the proof for d = 3

(1) First we will see that $MSMD_3 \notin PTAS$.

(2) Then we will see that $MSMD_3 \notin APX$.

Reduction from VERTEX COVER:

Instance H of Vertex Cover \rightarrow Instance G of MSMD₃

We will see that

PTAS for
$$G \Rightarrow PTAS$$
 for H

And so,

Reduction from VERTEX COVER:

Instance H of Vertex Cover \rightarrow Instance G of MSMD₃

We will see that

PTAS for $G \Rightarrow PTAS$ for H

And so,

∄ PTAS for MSMD₃

Reduction from VERTEX COVER:

Instance H of Vertex Cover \rightarrow Instance G of MSMD₃

We will see that

PTAS for $G \Rightarrow PTAS$ for H

And so,

∄ PTAS for MSMD₃

(1) $MSMD_3$ is not in PTAS

Reduction from VERTEX COVER:

Instance H of Vertex Cover \rightarrow Instance G of MSMD₃

We will see that

PTAS for
$$G \Rightarrow PTAS$$
 for H

And so,

We build a complete ternary tree with $|E(H)| = 3 \cdot 2^m$ leaves:

We add a copy of the set of leaves E(H):

E(H)

We join both sets with a Hamiltonian cycle (for technical reasons):

We add all the vertices of *H*:

We add the incidence relations between E(H) and $V(H) \rightarrow G$:

- If we touch a vertex of G \ V(H), we have to touch all the vertices of G \ V(H)
- Thus, MSMD₃ in G is equivalent to minimize the number of selected vertices in V(H)
 - \rightarrow this is **exactly** Vertex Cover in H !!
- Thus,

$$OPT_{MSMD_3}(G) = OPT_{VC}(H) + |V(G \setminus V(H))| =$$

= $OPT_{VC}(H) + 9 \cdot 2^m$

This clearly proves that

(1) MSMD₃ is not in PTAS

- If we touch a vertex of G \ V(H), we have to touch all the vertices of G \ V(H)
- Thus, MSMD₃ in G is equivalent to minimize the number of selected vertices in V(H)
 - \rightarrow this is **exactly** Vertex Cover in H !!
- Thus,

$$OPT_{MSMD_3}(G) = OPT_{VC}(H) + |V(G \setminus V(H))| =$$

= $OPT_{VC}(H) + 9 \cdot 2^m$

This clearly proves that

(1) MSMD₃ is not in PTAS

- If we touch a vertex of G \ V(H), we have to touch all the vertices of G \ V(H)
- Thus, MSMD₃ in G is equivalent to minimize the number of selected vertices in V(H)
 - → this is exactly VERTEX COVER in H!!
- Thus,

$$OPT_{MSMD_3}(G) = OPT_{VC}(H) + |V(G \setminus V(H))| =$$

= $OPT_{VC}(H) + 9 \cdot 2^m$

This clearly proves that

PTAS for $MSMD_3 \Rightarrow PTAS$ for VERTEX COVER

(1) MSMD₃ is not in PTAS

- If we touch a vertex of G \ V(H), we have to touch all the vertices of G \ V(H)
- Thus, MSMD₃ in G is equivalent to minimize the number of selected vertices in V(H)
 - \rightarrow this is **exactly** Vertex Cover in H !!
- Thus,

$$OPT_{MSMD_3}(G) = OPT_{VC}(H) + |V(G \setminus V(H))| =$$

= $OPT_{VC}(H) + 9 \cdot 2^m$

This clearly proves that

PTAS for MSMD₃ \Rightarrow PTAS for Vertex Cover

- Let $\alpha > 1$ be the factor of inapproximability of MSMD₃
- We use a technique called **error amplification**:
 - ▶ We build a sequence of families of graphs \mathcal{G}_k , such that MSMD₃ is hard to approximate in \mathcal{G}_k within a factor α^k
 - ► This proves that the problem is not in APX (for any constant C, $\exists k > 0$ such that $\alpha^k > C$)
- Let $G_1 = G$. We explain the construction of G_2 : first take our graph G and...

- Let $\alpha > 1$ be the factor of inapproximability of MSMD₃
- We use a technique called error amplification:
 - ▶ We build a sequence of families of graphs \mathcal{G}_k , such that MSMD₃ is hard to approximate in \mathcal{G}_k within a factor α^k
 - ► This proves that the problem is not in APX (for any constant C, $\exists k > 0$ such that $\alpha^k > C$)
- Let $G_1 = G$. We explain the construction of G_2 : first take our graph G and..

- Let $\alpha > 1$ be the factor of inapproximability of MSMD₃
- We use a technique called error amplification:
 - We build a sequence of families of graphs \mathcal{G}_k , such that MSMD₃ is hard to approximate in \mathcal{G}_k within a factor α^k
 - ► This proves that the problem is not in APX (for any constant C, $\exists k > 0$ such that $\alpha^k > C$)
- Let $G_1 = G$. We explain the construction of G_2 : first take our graph G and...

- Let $\alpha > 1$ be the factor of inapproximability of MSMD₃
- We use a technique called error amplification:
 - ▶ We build a sequence of families of graphs \mathcal{G}_k , such that MSMD₃ is hard to approximate in \mathcal{G}_k within a factor α^k
 - ► This proves that the problem is not in APX (for any constant C, $\exists k > 0$ such that $\alpha^k > C$)
- Let G₁ = G.
 We explain the construction of G₂: first take our graph G and...

For any vertex v (note its degree by d_v):

We will replace the vertex ν with a graph G_{ν} , built as follows:

We begin by placing a copy of G (described before):

We select d_V vertices of degree 3 in $T \subset G$:

We replace each of these vertices x_i with a C_4 :

In each C_4 , we join 3 of the vertices to the neighbors of x_i :

We join the d_v vertices of degree 2 to the d_v neighbors of v:

This construction for all $v \in G$ defines G_2 :

- Once a vertex in one G_v is chosen \rightarrow MSMD₃ in G_v (which is hard up to a constant α)
- But minimize the number of v's for which we touch $G_v \rightarrow MSMD_3$ in G (which is also hard up to a constant α)

- Thus, in G_2 the problem is hard to approximate up to a factor $\alpha \cdot \alpha = \alpha^2$
- Inductively we prove that in G_k the problem is hard to approximate up to a factor α^k

- Once a vertex in one G_{ν} is chosen \rightarrow MSMD₃ in G_{ν} (which is hard up to a constant α)
- But minimize the number of v's for which we touch G_v → MSMD₃ in G (which is also hard up to a constant α)

- Thus, in G_2 the problem is hard to approximate up to a factor $\alpha \cdot \alpha = \alpha^2$
- Inductively we prove that in G_k the problem is hard to approximate up to a factor α^k

- Once a vertex in one G_{ν} is chosen \rightarrow MSMD₃ in G_{ν} (which is hard up to a constant α)
- But minimize the number of v's for which we touch $G_v \rightarrow MSMD_3$ in G (which is also hard up to a constant α)

- Thus, in G_2 the problem is hard to approximate up to a factor $\alpha \cdot \alpha = \alpha^2$
- Inductively we prove that in G_k the problem is hard to approximate up to a factor α^k

- H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions.
- H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G.
- A graph class $\mathcal G$ is minor closed if every minor of a graph in $\mathcal G$ is again in $\mathcal G$.
- A graph class G is H-minor-free (or, excludes H as a minor) if no graph in G contains H as a minor.

- H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions.
- H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G.
- A graph class $\mathcal G$ is minor closed if every minor of a graph in $\mathcal G$ is again in $\mathcal G$.
- A graph class \mathcal{G} is H-minor-free (or, excludes H as a minor) if no graph in \mathcal{G} contains H as a minor.

- H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions.
- H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G.
- A graph class $\mathcal G$ is minor closed if every minor of a graph in $\mathcal G$ is again in $\mathcal G$.
- A graph class \mathcal{G} is H-minor-free (or, excludes H as a minor) if no graph in \mathcal{G} contains H as a minor.

- H is a contraction of G ($H \leq_c G$) if H occurs from G after applying a series of edge contractions.
- H is a minor of G ($H \leq_m G$) if H is the contraction of some subgraph of G.
- A graph class $\mathcal G$ is minor closed if every minor of a graph in $\mathcal G$ is again in $\mathcal G$.
- A graph class \mathcal{G} is H-minor-free (or, excludes H as a minor) if no graph in \mathcal{G} contains H as a minor.

The problem is in P for graphs of small treewidth

Lemma

Let G be a graph on n vertices with treewidth at most t, and let d be a positive integer. Then in time $\mathcal{O}((d+1)^t(t+1)^{d^2}n)$ we can either

- find a smallest subgraph of minimum degree at least d in G, or
- conclude that no such subgraph exists.

Corollary

Let G be an n-vertex graph with treewidth $\mathcal{O}(\log n)$, and let d be a positive integer. Then in polynomial time one can either

- find a smallest subgraph of minimum degree at least d in G, or
- conclude that no such subgraph exists.

The problem is in P for graphs of small treewidth

Lemma

Let G be a graph on n vertices with treewidth at most t, and let d be a positive integer. Then in time $\mathcal{O}((d+1)^t(t+1)^{d^2}n)$ we can either

- find a smallest subgraph of minimum degree at least d in G, or
- conclude that no such subgraph exists.

Corollary

Let G be an n-vertex graph with treewidth $\mathcal{O}(\log n)$, and let d be a positive integer. Then in polynomial time one can either

- find a smallest subgraph of minimum degree at least d in G, or
- conclude that no such subgraph exists.

Nice partition of *M*-minor-free graphs

Theorem

For a fixed graph M, there is a constant c_M such that for any integer $k \geq 1$ and for every M-minor-free graph G, the vertices of G can be partitioned into k+1 sets such that any k of the sets induce a graph of treewidth at most $c_M k$.

Furthermore, such a partition can be found in polynomial time.

[E. Demaine, M.T. Hajiaghayi and K.C. Kawarabayashi, FOCS'05]

- (1) Relying on the previous Theorem, partition V(G) in polynomial time into $\log n + 1$ sets $V_0, \ldots, V_{\log n}$ such that any $\log n$ of the sets induce a graph of treewidth at most $c_M \log n$, where c_M is a constant depending only on the excluded graph M.
- (2) Run the dynamic programming algorithm of the Lemma on all the subgraphs $G_i = G[V \setminus V_i]$ of log n sets, $i = 0, ..., \log n$.
- (3) This procedure finds all the solutions of size at most log *n*.
- (4) If no solution is found, output the whole graph G.

 This algorithm provides an $O(n/\log n)$ -approximation for MSMD_d in minor-free graphs, for all d > 3.
 - The running time of the algorithm is polynomial in n, since in step (2), for each G_l , the dynamic programming algorithm runs in $\mathcal{O}((d+1)^{l}(l_l+1)^{d^2}n)$ time, where l_l is the treewidth of G_l , which is at most $c_M \log n$.

- (1) Relying on the previous Theorem, partition V(G) in polynomial time into $\log n + 1$ sets $V_0, \ldots, V_{\log n}$ such that any $\log n$ of the sets induce a graph of treewidth at most $c_M \log n$, where c_M is a constant depending only on the excluded graph M.
- (2) Run the dynamic programming algorithm of the Lemma on all the subgraphs $G_i = G[V \setminus V_i]$ of log n sets, $i = 0, ..., \log n$.
- (3) This procedure finds all the solutions of size at most log *n*.
- This algorithm provides an $O(n/\log n)$ -approximation for MSMD_c in minor-free graphs, for all d > 3.
 - The running time of the algorithm is polynomial in n, since in step (2), for each G_i , the dynamic programming algorithm runs in $\mathcal{O}((d+1)^{t_i}(t_i+1)^{\sigma^2}n)$ time, where t_i is the treewidth of G_i , which is at most c_i log n.

- (1) Relying on the previous Theorem, partition V(G) in polynomial time into $\log n + 1$ sets $V_0, \ldots, V_{\log n}$ such that any $\log n$ of the sets induce a graph of treewidth at most $c_M \log n$, where c_M is a constant depending only on the excluded graph M.
- (2) Run the dynamic programming algorithm of the Lemma on all the subgraphs $G_i = G[V \setminus V_i]$ of log n sets, $i = 0, ..., \log n$.
- (3) This procedure finds all the solutions of size at most $\log n$.
- This algorithm provides an $\mathcal{O}(n/\log n)$ -approximation for MSMD_c in minor-free graphs, for all d > 3
 - The running time of the algorithm is polynomial in n, since in step (2), for each G_i , the dynamic programming algorithm runs in $\mathcal{O}((d+1)^{t_i}(t_i+1)^{d^2}n)$ time, where t_i is the treewidth of G_i , which is at most $c_M \log n$.

- (1) Relying on the previous Theorem, partition V(G) in polynomial time into $\log n + 1$ sets $V_0, \ldots, V_{\log n}$ such that any $\log n$ of the sets induce a graph of treewidth at most $c_M \log n$, where c_M is a constant depending only on the excluded graph M.
- (2) Run the dynamic programming algorithm of the Lemma on all the subgraphs $G_i = G[V \setminus V_i]$ of log n sets, $i = 0, ..., \log n$.
- (3) This procedure finds all the solutions of size at most $\log n$.
- (4) If no solution is found, output the whole graph G.
 - This algorithm provides an $\mathcal{O}(n/\log n)$ -approximation for MSMD_d in minor-free graphs, for all $d \geq 3$.
 - The running time of the algorithm is polynomial in n, since in step (2), for each G_i , the dynamic programming algorithm runs in $\mathcal{O}((d+1)^{t_i}(t_i+1)^{d^2}n)$ time, where t_i is the treewidth of G_i , which is at most $c_M \log n$.

- (1) Relying on the previous Theorem, partition V(G) in polynomial time into $\log n + 1$ sets $V_0, \ldots, V_{\log n}$ such that any $\log n$ of the sets induce a graph of treewidth at most $c_M \log n$, where c_M is a constant depending only on the excluded graph M.
- (2) Run the dynamic programming algorithm of the Lemma on all the subgraphs $G_i = G[V \setminus V_i]$ of log n sets, $i = 0, ..., \log n$.
- (3) This procedure finds all the solutions of size at most log *n*.
- (4) If no solution is found, output the whole graph G.
 This algorithm provides an O(n/log n)-approximation for MSMD_d in minor-free graphs, for all d ≥ 3.

The running time of the algorithm is polynomial in n, since in step (2), for each G_i , the dynamic programming algorithm runs in $\mathcal{O}((d+1)^{t_i}(t_i+1)^{d^2}n)$ time, where t_i is the treewidth of G_i , which is at most $c_M \log n$.

- (1) Relying on the previous Theorem, partition V(G) in polynomial time into $\log n + 1$ sets $V_0, \ldots, V_{\log n}$ such that any $\log n$ of the sets induce a graph of treewidth at most $c_M \log n$, where c_M is a constant depending only on the excluded graph M.
- (2) Run the dynamic programming algorithm of the Lemma on all the subgraphs $G_i = G[V \setminus V_i]$ of log n sets, $i = 0, ..., \log n$.
- (3) This procedure finds all the solutions of size at most $\log n$.
- (4) If no solution is found, output the whole graph G.

This algorithm provides an $\mathcal{O}(n/\log n)$ -approximation for MSMD_d in minor-free graphs, for all $d \geq 3$.

The running time of the algorithm is polynomial in n, since in step (2), for each G_i , the dynamic programming algorithm runs in $\mathcal{O}((d+1)^{t_i}(t_i+1)^{d^2}n)$ time, where t_i is the treewidth of G_i , which is at most $c_M \log n$.

3- Dual Degree-Dense

k-Subgraph (DDDkS)

Dual Degree-Dense k-Subgraph (DDDkS):

- It is the natural dual version of the preceding problem.
- Our results:
 - Randomized $\mathcal{O}(\sqrt{n}\log n)$ -approximation algorithm in general graphs.
 - ▶ Deterministic $\mathcal{O}(n^{\delta})$ -approximation algorithm in general graphs, for some universal constant $\delta < 1/3$.

Dual Degree-Dense k-Subgraph (DDDkS):

- It is the natural *dual* version of the preceding problem.
- Our results:
 - Randomized $\mathcal{O}(\sqrt{n}\log n)$ -approximation algorithm in general graphs.
 - ▶ Deterministic $\mathcal{O}(n^{\delta})$ -approximation algorithm in general graphs, for some universal constant $\delta < 1/3$.

Dual Degree-Dense k-Subgraph (DDDkS):

- It is the natural dual version of the preceding problem.
- Our results:
 - Randomized $\mathcal{O}(\sqrt{n}\log n)$ -approximation algorithm in general graphs.
 - ▶ Deterministic $\mathcal{O}(n^{\delta})$ -approximation algorithm in general graphs, for some universal constant $\delta < 1/3$.

Dual Degree-Dense k-Subgraph (DDDkS):

- It is the natural dual version of the preceding problem.
- Our results:
 - ▶ Randomized $\mathcal{O}(\sqrt{n}\log n)$ -approximation algorithm in general graphs.
 - ▶ Deterministic $\mathcal{O}(n^{\delta})$ -approximation algorithm in general graphs, for some universal constant $\delta < 1/3$.

Problem 1:

- Approximation algorithms and hardness results in general graphs.
- ▶ Open: closing the *huge* complexity gap of MDBCS_d, $d \ge 2$.

Problem 2:

- Hardness results and an approximation algorithm in minor-free graphs.
- Open: finding approximation algorithms in general graphs for MSMD_d, d ≥ 3.

- Approximation algorithms in general graphs
- ▶ Open: hardness results for DDDkS, $k \ge 3$

Problem 1:

- Approximation algorithms and hardness results in general graphs.
- ▶ Open: closing the *huge* complexity gap of MDBCS_d, $d \ge 2$.

Problem 2:

- Hardness results and an approximation algorithm in minor-free graphs.
- ▶ Open: finding approximation algorithms in general graphs for MSMD_d, d ≥ 3.

- Approximation algorithms in general graphs
- **Open:** hardness results for DDDkS, k > 3

Problem 1:

- Approximation algorithms and hardness results in general graphs.
- ▶ Open: closing the *huge* complexity gap of MDBCS_d, $d \ge 2$.

Problem 2:

- Hardness results and an approximation algorithm in minor-free graphs.
- Open: finding approximation algorithms in general graphs for MSMD_d, d ≥ 3.

- Approximation algorithms in general graphs.
- ▶ Open: hardness results for DDDkS, $k \ge 3$

Problem 1:

- Approximation algorithms and hardness results in general graphs.
- ▶ Open: closing the *huge* complexity gap of MDBCS_d, $d \ge 2$.

Problem 2:

- Hardness results and an approximation algorithm in minor-free graphs.
- Open: finding approximation algorithms in general graphs for MSMD_d, d ≥ 3.

- Approximation algorithms in general graphs.
- ▶ Open: hardness results for DDDkS, $k \ge 3$.

Problem 1:

- Approximation algorithms and hardness results in general graphs.
- ▶ Open: closing the *huge* complexity gap of MDBCS_d, $d \ge 2$.

Problem 2:

- Hardness results and an approximation algorithm in minor-free graphs.
- ▶ Open: finding approximation algorithms in general graphs for $MSMD_d$, $d \ge 3$.

- Approximation algorithms in general graphs.
- ▶ Open: hardness results for DDDkS, $k \ge 3$.

Problem 1:

- Approximation algorithms and hardness results in general graphs.
- ▶ Open: closing the *huge* complexity gap of MDBCS_d, $d \ge 2$.

Problem 2:

- Hardness results and an approximation algorithm in minor-free graphs.
- Open: finding approximation algorithms in general graphs for MSMD_d, d ≥ 3.

- Approximation algorithms in general graphs.
- ▶ Open: hardness results for DDDkS, $k \ge 3$.

Thanks!