On the complexity of finding large odd induced subgraphs and odd colorings

Ignasi Sau

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Joint work with Rémy Belmonte University of Electro-Communications, Chofu, Japan
virtUMA 2020
21-25 septiembre 2020

M-NMM

Outline of the talk

(1) Introduction
(2) Our results
(3) Some proofs
(4) Further research

Next section is...

(1) Introduction

(2) Our results

(3) Some proofs

4 Further research

A graph is even/odd if all its vertex degrees are even/odd.

A graph is even/odd if all its vertex degrees are even/odd.
Theorem (Gallai ~1960)
For every graph $G, V(G)$ can be partitioned into two sets

- V_{1} and V_{2} such that both $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are even,

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph $G, V(G)$ can be partitioned into two sets

- V_{1} and V_{2} such that both $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are even, and
- V_{1}^{\prime} and V_{2}^{\prime} such that $G\left[V_{1}^{\prime}\right]$ is even and $G\left[V_{2}^{\prime}\right]$ is odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph $G, V(G)$ can be partitioned into two sets

- V_{1} and V_{2} such that both $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are even, and
- V_{1}^{\prime} and V_{2}^{\prime} such that $G\left[V_{1}^{\prime}\right]$ is even and $G\left[V_{2}^{\prime}\right]$ is odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph $G, V(G)$ can be partitioned into two sets

- V_{1} and V_{2} such that both $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are even, and
- V_{1}^{\prime} and V_{2}^{\prime} such that $G\left[V_{1}^{\prime}\right]$ is even and $G\left[V_{2}^{\prime}\right]$ is odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph $G, V(G)$ can be partitioned into two sets

- V_{1} and V_{2} such that both $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are even, and
- V_{1}^{\prime} and V_{2}^{\prime} such that $G\left[V_{1}^{\prime}\right]$ is even and $G\left[V_{2}^{\prime}\right]$ is odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph $G, V(G)$ can be partitioned into two sets

- V_{1} and V_{2} such that both $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are even, and
- V_{1}^{\prime} and V_{2}^{\prime} such that $G\left[V_{1}^{\prime}\right]$ is even and $G\left[V_{2}^{\prime}\right]$ is odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph $G, V(G)$ can be partitioned into two sets

- V_{1} and V_{2} such that both $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are even, and
- V_{1}^{\prime} and V_{2}^{\prime} such that $G\left[V_{1}^{\prime}\right]$ is even and $G\left[V_{2}^{\prime}\right]$ is odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph $G, V(G)$ can be partitioned into two sets

- V_{1} and V_{2} such that both $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are even, and
- V_{1}^{\prime} and V_{2}^{\prime} such that $G\left[V_{1}^{\prime}\right]$ is even and $G\left[V_{2}^{\prime}\right]$ is odd.

Corollary

Every graph G contains an even induced subgraph with at least $|V(G)| / 2$ vertices.

Are similar properties true for odd subgraphs?

Are similar properties true for odd subgraphs?
For a graph G, let $\operatorname{mos}(G)$: order of a largest odd induced subgraph of G.

Are similar properties true for odd subgraphs?
For a graph G, let
$\operatorname{mos}(G)$: order of a largest odd induced subgraph of G.
$\chi_{\text {odd }}(G)$: minimum number of odd induced subgraphs of G that partition $V(G)$.

Are similar properties true for odd subgraphs?
For a graph G, let
$\operatorname{mos}(G)$: order of a largest odd induced subgraph of G.
$\chi_{\text {odd }}(G)$: minimum number of odd induced subgraphs of G that partition $V(G)$.

For $\chi_{\text {odd }}(G)$ to be well-defined, each connected component of G must have even order.

Are similar properties true for odd subgraphs?
For a graph G, let
$\operatorname{mos}(G)$: order of a largest odd induced subgraph of G.
$\chi_{\text {odd }}(G)$: minimum number of odd induced subgraphs of G that partition $V(G)$.

For $\chi_{\text {odd }}(G)$ to be well-defined, each connected component of G must have even order.
$\operatorname{mes}(G)$ and $\chi_{\text {even }}(G)$: symmetric parameters for the even version.

Are similar properties true for odd subgraphs?
For a graph G, let
$\operatorname{mos}(G)$: order of a largest odd induced subgraph of G.
$\chi_{\text {odd }}(G)$: minimum number of odd induced subgraphs of G that partition $V(G)$.

For $\chi_{\text {odd }}(G)$ to be well-defined, each connected component of G must have even order.
$\operatorname{mes}(G)$ and $\chi_{\text {even }}(G)$: symmetric parameters for the even version.
Hence, for every graph G on n vertices: $\operatorname{mes}(G) \geq n / 2$ and $\chi_{\text {even }}(G) \leq 2$.

Are similar properties true for odd subgraphs?
For a graph G, let
$\operatorname{mos}(G)$: order of a largest odd induced subgraph of G.
$\chi_{\text {odd }}(G)$: minimum number of odd induced subgraphs of G that partition $V(G)$.

For $\chi_{\text {odd }}(G)$ to be well-defined, each connected component of G must have even order.
$\operatorname{mes}(G)$ and $\chi_{\text {even }}(G)$: symmetric parameters for the even version.
Hence, for every graph G on n vertices: $\operatorname{mes}(G) \geq n / 2$ and $\chi_{\text {even }}(G) \leq 2$.

What about $\operatorname{mos}(G)$ and $\chi_{\text {odd }}(G)$?

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

- For every " good" $G, \operatorname{mos}(G) \geq(1-o(1)) \sqrt{n / \sigma}$.

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

- For every "good" $G, \operatorname{mos}(G) \geq(1-o(1)) \sqrt{n / 6}$.
- For every "good" $G, \operatorname{mos}(G) \geq \frac{c n}{\log n}$ for some $c>0$.

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

- For every "good" $G, \operatorname{mos}(G) \geq(1-o(1)) \sqrt{n / 6}$.
- For every "good" $G, \operatorname{mos}(G) \geq \frac{c n}{\log n}$ for some $c>0$. [Scott. 1992]
- The conjecture has been proved for particular graph classes:
- Trees.
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $\operatorname{tw}(G) \leq 2$.
[Radcliffe, Scott. 1995]
[Scott. 1992]
[Berman, Wang, Wargo. 1997]
[Hou, Yu, Li, Liu. 2018]

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

- For every "good" $G, \operatorname{mos}(G) \geq(1-o(1)) \sqrt{n / 6}$.
- For every "good" $G, \operatorname{mos}(G) \geq \frac{c n}{\log n}$ for some $c>0$. [Scott. 1992]
- The conjecture has been proved for particular graph classes:
- Trees.
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $\operatorname{tw}(G) \leq 2$.
[Radcliffe, Scott. 1995]
[Scott. 1992]
[Berman, Wang, Wargo. 1997]
[Hou, Yu, Li, Liu. 2018]

In these articles, they obtain best possible constants $c>0$.

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

- For every "good" $G, \operatorname{mos}(G) \geq(1-o(1)) \sqrt{n / 6}$.
- For every "good" $G, \operatorname{mos}(G) \geq \frac{c n}{\log n}$ for some $c>0$. [Scott. 1992]
- The conjecture has been proved for particular graph classes:
- Trees.
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $\operatorname{tw}(G) \leq 2$.
[Radcliffe, Scott. 1995]
[Scott. 1992]
[Berman, Wang, Wargo. 1997]
[Hou, Yu, Li, Liu. 2018]

In these articles, they obtain best possible constants $c>0$.
The conjecture is still open.

What about $\chi_{\text {odd }}(G)$?

What about $\chi_{\text {odd }}(G)$?

For $\chi_{\text {odd }}(G)$ to be well-defined, each connected component of G must have even order.

What about $\chi_{\text {odd }}(G)$?

For $\chi_{\text {odd }}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.

What about $\chi_{\text {odd }}(G)$?

For $\chi_{\text {odd }}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.
[Scott. 2001]
Upper and lower bounds on $\chi_{\text {odd }}(G)$:
[Scott. 2001]

What about $\chi_{\text {odd }}(G)$?

For $\chi_{\text {odd }}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.
[Scott. 2001]
Upper and lower bounds on $\chi_{\text {odd }}(G)$:
[Scott. 2001]

- For every "good" graph G on n vertices,

$$
\chi_{\text {odd }}(G) \leq \frac{c n}{\sqrt{\log \log n}}=o(n)
$$

What about $\chi_{\text {odd }}(G)$?

For $\chi_{\text {odd }}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.
Upper and lower bounds on $\chi_{\text {odd }}(G)$:
[Scott. 2001]

- For every "good" graph G on n vertices,

$$
\chi_{\text {odd }}(G) \leq \frac{c n}{\sqrt{\log \log n}}=o(n)
$$

- There are "good" graphs G on n vertices for which

$$
\chi_{\text {odd }}(G) \geq(1+o(1)) \sqrt{2 n}=\Omega(\sqrt{n})
$$

What about $\chi_{\text {odd }}(G)$?

For $\chi_{\text {odd }}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.
Upper and lower bounds on $\chi_{\text {odd }}(G)$:
[Scott. 2001]

- For every "good" graph G on n vertices,

$$
\chi_{\text {odd }}(G) \leq \frac{c n}{\sqrt{\log \log n}}=o(n)
$$

- There are "good" graphs G on n vertices for which

$$
\chi_{\mathrm{odd}}(G) \geq(1+o(1)) \sqrt{2 n}=\Omega(\sqrt{n})
$$

$G=$ subdivided n-clique with $n_{\equiv} \equiv 0,3(\bmod 4)$

What about $\chi_{\text {odd }}(G)$?

For $\chi_{\text {odd }}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.
Upper and lower bounds on $\chi_{\text {odd }}(G)$:
[Scott. 2001]

- For every "good" graph G on n vertices,

$$
\chi_{\text {odd }}(G) \leq \frac{c n}{\sqrt{\log \log n}}=o(n)
$$

- There are "good" graphs G on n vertices for which

$$
\chi_{\mathrm{odd}}(G) \geq(1+o(1)) \sqrt{2 n}=\Omega(\sqrt{n})
$$

$G=$ subdivided n-clique with $n \equiv 0,3(\bmod 4)$

And what about the complexity of computing these parameters?

And what about the complexity of computing these parameters?

Computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$ is NP-hard.

And what about the complexity of computing these parameters?

Computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$ is NP-hard.

For every graph G, $\chi_{\text {even }}(G) \leq 2$, so it is easy.

And what about the complexity of computing these parameters?

Computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$ is NP-hard.

For every graph G, $\chi_{\text {even }}(G) \leq 2$, so it is easy.

As for $\chi_{\text {odd }}(G)$, no complexity results were known so far.

And what about the complexity of computing these parameters?

Computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$ is NP-hard.

For every graph G, $\chi_{\text {even }}(G) \leq 2$, so it is easy.

As for $\chi_{\text {odd }}(G)$, no complexity results were known so far.

Our goal Computational aspects of the parameters mos and $\chi_{\text {odd }}$.

Next section is...

(1) Introduction
(2) Our results
(3) Some proofs
(4) Further research

For an integer $q \geq 1$, we prove that deciding whether $\chi_{\text {odd }}(G) \leq q$ is

For an integer $q \geq 1$, we prove that deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

For an integer $q \geq 1$, we prove that deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

Since computing $\operatorname{mos}(G)$ and $\chi_{\text {odd }}(G)$ are NP-hard, we focus on its parameterized complexity,

For an integer $q \geq 1$, we prove that deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

Since computing $\operatorname{mos}(G)$ and $\chi_{\text {odd }}(G)$ are NP-hard, we focus on its parameterized complexity, in particular on structural parameters.

For an integer $q \geq 1$, we prove that deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

Since computing $\operatorname{mos}(G)$ and $\chi_{\text {odd }}(G)$ are NP-hard, we focus on its parameterized complexity, in particular on structural parameters.

For an integer $q \geq 1$, we prove that deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

Since computing $\operatorname{mos}(G)$ and $\chi_{\text {odd }}(G)$ are NP-hard, we focus on its parameterized complexity, in particular on structural parameters.

We present FPT algorithms parameterized by rankwidth, in time:

- $2^{\mathcal{O}(\mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$, for an n-vertex graph G, given a decomposition tree of width at most rw.

We present FPT algorithms parameterized by rankwidth, in time:

- $2^{\mathcal{O}(\mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$,
 for an n-vertex graph G, given a decomposition tree of width at most rw.
- Inspired by algorithms of
[Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]

We present FPT algorithms parameterized by rankwidth, in time:

- $2^{\mathcal{O}(\mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$,
 for an n-vertex graph G, given a decomposition tree of width at most rw.
- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o\left(r w^{2}\right)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.

We present FPT algorithms parameterized by rankwidth, in time:

- $2^{\mathcal{O}(\mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$,
 for an n-vertex graph G, given a decomposition tree of width at most rw.
- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o\left(r w^{2}\right)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(r w)}$ optimal under the ETH? ($\not 2^{\circ(n)}$ algo for 3 -SAT)

We present FPT algorithms parameterized by rankwidth, in time:

- $2^{\mathcal{O}(\mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$,
- $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$, for an n-vertex graph G, given a decomposition tree of width at most rw.
- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o\left(r w^{2}\right)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(r w)}$ optimal under the ETH? ($\not 2^{\circ(n)}$ algo for 3-SAT)
- For deciding whether $\chi_{\text {odd }}(G) \leq q$, our NP-hardness reduction implies that $\nexists 2^{o(n)}$ algo under the ETH

We present FPT algorithms parameterized by rankwidth, in time:

- $2^{\mathcal{O}(\mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$,
- $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$, for an n-vertex graph G, given a decomposition tree of width at most rw.
- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o\left(r w^{2}\right)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(r w)}$ optimal under the ETH? ($\not 2^{\circ(n)}$ algo for 3-SAT)
- For deciding whether $\chi_{\text {odd }}(G) \leq q$, our NP-hardness reduction implies that $\nexists 2^{\circ(n)}$ algo under the ETH $\Rightarrow \nexists 2^{\circ(r w)} \cdot n^{\mathcal{O}(1)} \checkmark$

We present FPT algorithms parameterized by rankwidth, in time:

- $2^{\mathcal{O}(r w)} \cdot n^{\mathcal{O}(1)}$ for computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$, for an n-vertex graph G, given a decomposition tree of width at most rw.
- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o\left(r w^{2}\right)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(r w)}$ optimal under the ETH? ($\nexists 2^{\circ(n)}$ algo for 3 -SAT)
- For deciding whether $\chi_{\text {odd }}(G) \leq q$, our NP-hardness reduction implies that $\nexists 2^{\circ(n)}$ algo under the ETH $\Rightarrow \nexists 2^{o(r w)} \cdot n^{\mathcal{O}(1)} \checkmark$
- For computing mes (G) and $\operatorname{mos}(G)$, existing NP-hardness reduction implies only that $\nexists 2^{\circ(\sqrt{n})}$ algo under the ETH.
[Cai, Yang. 2011]

We present FPT algorithms parameterized by rankwidth, in time:

- $2^{\mathcal{O}(\mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$, for an n-vertex graph G, given a decomposition tree of width at most rw.
- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o\left(r w^{2}\right)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(r w)}$ optimal under the ETH? ($\not 2^{\circ(n)}$ algo for 3-SAT)
- For deciding whether $\chi_{\text {odd }}(G) \leq q$, our NP-hardness reduction implies that $\nexists 2^{\circ(n)}$ algo under the ETH $\Rightarrow \nexists 2^{o(r w)} \cdot n^{\mathcal{O}(1)} \checkmark$
- For computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$, existing NP-hardness reduction implies only that $\nexists 2^{\circ}(\sqrt{n})$ algo under the ETH. [Cai, Yang. 2011]
We provide a linear NP-hardness reduction for $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$,

We present FPT algorithms parameterized by rankwidth, in time:

- $2^{\mathcal{O}(\mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$,
 for an n-vertex graph G, given a decomposition tree of width at most rw.
- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o\left(r w^{2}\right)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(r w)}$ optimal under the ETH? ($\nexists 2^{\circ(n)}$ algo for 3 -SAT)
- For deciding whether $\chi_{\text {odd }}(G) \leq q$, our NP-hardness reduction implies that $\nexists 2^{\circ(n)}$ algo under the ETH $\Rightarrow \nexists 2^{o(r w)} \cdot n^{\mathcal{O}(1)} \checkmark$
- For computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$, existing NP-hardness reduction implies only that $\# 2^{\circ}(\sqrt{n})$ algo under the ETH. [Cai, Yang. 2011]
We provide a linear NP-hardness reduction for $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$, hence $\nexists 2^{\circ(n)}$ algo under ETH

We present FPT algorithms parameterized by rankwidth, in time:

- $2^{\mathcal{O}(r w)} \cdot n^{\mathcal{O}(1)}$ for computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$,
- $2^{\mathcal{O}(q \cdot \mathrm{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$, for an n-vertex graph G, given a decomposition tree of width at most rw.
- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o\left(r w^{2}\right)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(r w)}$ optimal under the ETH? ($\nexists 2^{\circ(n)}$ algo for 3 -SAT)
- For deciding whether $\chi_{\text {odd }}(G) \leq q$, our NP-hardness reduction implies that $\nexists 2^{o(n)}$ algo under the ETH $\Rightarrow \nexists 2^{o(r w)} \cdot n^{\mathcal{O}(1)} \checkmark$
- For computing mes (G) and $\operatorname{mos}(G)$, existing NP-hardness reduction implies only that $\nexists 2^{\circ}(\sqrt{n})$ algo under the ETH. [Cai, Yang. 2011]
We provide a linear NP-hardness reduction for $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$, hence $\nexists 2^{\circ(n)}$ algo under ETH $\Rightarrow \nexists 2^{\circ(\mathrm{rw})} \cdot n^{\mathcal{O}(1)} \checkmark$

Finally, we provide bounds on the parameters $\chi_{\text {odd }}(G)$ and $\operatorname{mos}(G)$.

Finally, we provide bounds on the parameters $\chi_{\text {odd }}(G)$ and $\operatorname{mos}(G)$.
(1) We prove that, for every graph G with all components of even order,

$$
\chi_{\mathrm{odd}}(G) \leq \operatorname{tw}(G)+1
$$

Finally, we provide bounds on the parameters $\chi_{\text {odd }}(G)$ and $\operatorname{mos}(G)$.
(1) We prove that, for every graph G with all components of even order,

$$
\chi_{\mathrm{odd}}(G) \leq \operatorname{tw}(G)+1
$$

This bound is tight and has some consequences.

Finally, we provide bounds on the parameters $\chi_{\text {odd }}(G)$ and $\operatorname{mos}(G)$.
(1) We prove that, for every graph G with all components of even order,

$$
\chi_{\mathrm{odd}}(G) \leq \operatorname{tw}(G)+1
$$

This bound is tight and has some consequences.
Recall the "folklore" conjecture about $\operatorname{mos}(G)$:

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

Finally, we provide bounds on the parameters $\chi_{\text {odd }}(G)$ and $\operatorname{mos}(G)$.
(1) We prove that, for every graph G with all components of even order,

$$
\chi_{\mathrm{odd}}(G) \leq \operatorname{tw}(G)+1
$$

This bound is tight and has some consequences.
Recall the "folklore" conjecture about $\operatorname{mos}(G)$:

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

- \mathcal{G}_{k} : graphs of treewidth at most k without isolated vertices.

Finally, we provide bounds on the parameters $\chi_{\text {odd }}(G)$ and $\operatorname{mos}(G)$.
(1) We prove that, for every graph G with all components of even order,

$$
\chi_{\mathrm{odd}}(G) \leq \operatorname{tw}(G)+1
$$

This bound is tight and has some consequences.
Recall the "folklore" conjecture about $\operatorname{mos}(G)$:

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

- \mathcal{G}_{k} : graphs of treewidth at most k without isolated vertices.
- $c_{k}=\min _{G \in \mathcal{G}_{k}} \frac{\operatorname{mos}(G)}{|V(G)|}$.

Finally, we provide bounds on the parameters $\chi_{\text {odd }}(G)$ and $\operatorname{mos}(G)$.
(1) We prove that, for every graph G with all components of even order,

$$
\chi_{\mathrm{odd}}(G) \leq \operatorname{tw}(G)+1
$$

This bound is tight and has some consequences.
Recall the "folklore" conjecture about $\operatorname{mos}(G)$:

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

- \mathcal{G}_{k} : graphs of treewidth at most k without isolated vertices.
- $c_{k}=\min _{G \in \mathcal{G}_{k}} \frac{\operatorname{mos}(G)}{|V(G)|}$.
- So, $c_{k}>0$ if and only if the conjecture is true for \mathcal{G}_{k}.

Finally, we provide bounds on the parameters $\chi_{\text {odd }}(G)$ and $\operatorname{mos}(G)$.
(1) We prove that, for every graph G with all components of even order,

$$
\chi_{\mathrm{odd}}(G) \leq \operatorname{tw}(G)+1
$$

This bound is tight and has some consequences.
Recall the "folklore" conjecture about $\operatorname{mos}(G)$:

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

- \mathcal{G}_{k} : graphs of treewidth at most k without isolated vertices.
- $c_{k}=\min _{G \in \mathcal{G}_{k}} \frac{\operatorname{mos}(G)}{|V(G)|}$.
- So, $c_{k}>0$ if and only if the conjecture is true for \mathcal{G}_{k}.
- It is known that $c_{k} \geq \frac{1}{2(k+1)}$.

Finally, we provide bounds on the parameters $\chi_{\text {odd }}(G)$ and $\operatorname{mos}(G)$.
(1) We prove that, for every graph G with all components of even order,

$$
\chi_{\mathrm{odd}}(G) \leq \operatorname{tw}(G)+1
$$

This bound is tight and has some consequences.
Recall the "folklore" conjecture about $\operatorname{mos}(G)$:

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

- \mathcal{G}_{k} : graphs of treewidth at most k without isolated vertices.
- $c_{k}=\min _{G \in \mathcal{G}_{k}} \frac{\operatorname{mos}(G)}{|V(G)|}$.
- So, $c_{k}>0$ if and only if the conjecture is true for \mathcal{G}_{k}.
- It is known that $c_{k} \geq \frac{1}{2(k+1)}$.
- Our bound implies that $c_{k} \geq \frac{1}{k+1}$.

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

Proved for particular graph classes, with best possible constant $c>0$:

- Trees.
[Radcliffe, Scott. 1995]
- Graphs G with bounded $\chi(G)$.
[Scott. 1992]
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $\operatorname{tw}(G) \leq 2$.

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

Proved for particular graph classes, with best possible constant $c>0$:

- Trees.
[Radcliffe, Scott. 1995]
- Graphs G with bounded $\chi(G)$.
[Scott. 1992]
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $\operatorname{tw}(G) \leq 2$.
- We prove that if $\mathrm{cw}(G) \leq 2$ (cographs), then

$$
\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil
$$

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

Proved for particular graph classes, with best possible constant $c>0$:

- Trees.
[Radcliffe, Scott. 1995]
- Graphs G with bounded $\chi(G)$.
[Scott. 1992]
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $\operatorname{tw}(G) \leq 2$.
[Berman, Wang, Wargo. 1997]
[Hou, Yu, Li, Liu. 2018]
- We prove that if $\operatorname{cw}(G) \leq 2$ (cographs), then

$$
\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil, \quad \text { and this bound is tight. }
$$

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

Proved for particular graph classes, with best possible constant $c>0$:

- Trees.
[Radcliffe, Scott. 1995]
- Graphs G with bounded $\chi(G)$.
[Scott. 1992]
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $\operatorname{tw}(G) \leq 2$.
[Berman, Wang, Wargo. 1997]
[Hou, Yu, Li, Liu. 2018]
- We prove that if $\operatorname{cw}(G) \leq 2$ (cographs), then

$$
\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil, \quad \text { and this bound is tight. }
$$

- We prove that, if G is a cograph, then $\chi_{\text {odd }}(G) \leq 3$, and this is tight.

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

Proved for particular graph classes, with best possible constant $c>0$:

- Trees.
[Radcliffe, Scott. 1995]
- Graphs G with bounded $\chi(G)$.
[Scott. 1992]
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $\operatorname{tw}(G) \leq 2$.
[Berman, Wang, Wargo. 1997]
[Hou, Yu, Li, Liu. 2018]
- We prove that if $\operatorname{cw}(G) \leq 2$ (cographs), then

$$
\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil, \quad \text { and this bound is tight. }
$$

- We prove that, if G is a cograph, then $\chi_{\text {odd }}(G) \leq 3$, and this is tight.
- Note that cographs are exactly P_{4}-free graphs.

Conjecture

There exists a constant $c>0$ such that, for every n-vertex graph G without isolated vertices, $\operatorname{mos}(G) \geq c \cdot n$.

Proved for particular graph classes, with best possible constant $c>0$:

- Trees.
[Radcliffe, Scott. 1995]
- Graphs G with bounded $\chi(G)$.
[Scott. 1992]
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $\operatorname{tw}(G) \leq 2$.
[Berman, Wang, Wargo. 1997]
[Hou, Yu, Li, Liu. 2018]
- We prove that if $\mathrm{cw}(G) \leq 2$ (cographs), then

$$
\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil, \quad \text { and this bound is tight. }
$$

- We prove that, if G is a cograph, then $\chi_{\text {odd }}(G) \leq 3$, and this is tight.
- Note that cographs are exactly P_{4}-free graphs.

We show that $\chi_{\text {odd }}$ is unbounded for P_{5}-free graphs.

Next section is...

(1) Introduction
(2) Our results
(3) Some proofs
(4) Further research

Theorem

For an integer $q \geq 1$, deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

Theorem

For an integer $q \geq 1$, deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

For $q=1$ the problem is trivial: G needs to be an odd graph itself.

Theorem

For an integer $q \geq 1$, deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

For $q=2 \equiv$ feasibility of a system of linear equations over GF[2]:

Theorem

For an integer $q \geq 1$, deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

For $q=2 \equiv$ feasibility of a system of linear equations over GF[2]:

- $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$.

Theorem

For an integer $q \geq 1$, deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

For $q=2 \equiv$ feasibility of a system of linear equations over GF[2]:

- $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Want $V(G)=V_{0} \uplus V_{1}$ with $G\left[V_{0}\right], G\left[V_{1}\right]$ odd.

Theorem

For an integer $q \geq 1$, deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

For $q=2 \equiv$ feasibility of a system of linear equations over GF[2]:

- $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Want $V(G)=V_{0} \uplus V_{1}$ with $G\left[V_{0}\right], G\left[V_{1}\right]$ odd.
- For every vertex v_{i}, create a binary variable x_{i}.

For every edge $v_{i} v_{j}$, create a binary variable $x_{i, j}$.

Theorem

For an integer $q \geq 1$, deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

For $q=2 \equiv$ feasibility of a system of linear equations over GF[2]:

- $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Want $V(G)=V_{0} \uplus V_{1}$ with $G\left[V_{0}\right], G\left[V_{1}\right]$ odd.
- For every vertex v_{i}, create a binary variable x_{i}.

For every edge $v_{i} v_{j}$, create a binary variable $x_{i, j}$.

- x_{i} : indicates whether $v_{i} \in V_{0}$ or $v_{i} \in V_{1}$.

Theorem

For an integer $q \geq 1$, deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

For $q=2 \equiv$ feasibility of a system of linear equations over GF[2]:

- $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Want $V(G)=V_{0} \uplus V_{1}$ with $G\left[V_{0}\right], G\left[V_{1}\right]$ odd.
- For every vertex v_{i}, create a binary variable x_{i}.

For every edge $v_{i} v_{j}$, create a binary variable $x_{i, j}$.

- x_{i} : indicates whether $v_{i} \in V_{0}$ or $v_{i} \in V_{1}$.
$x_{i, j}$: indicates whether $v_{i} v_{j}$ is monochromatic (1) or not (0).

Theorem

For an integer $q \geq 1$, deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

For $q=2 \equiv$ feasibility of a system of linear equations over GF[2]:

- $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Want $V(G)=V_{0} \uplus V_{1}$ with $G\left[V_{0}\right], G\left[V_{1}\right]$ odd.
- For every vertex v_{i}, create a binary variable x_{i}.

For every edge $v_{i} v_{j}$, create a binary variable $x_{i, j}$.

- x_{i} : indicates whether $v_{i} \in V_{0}$ or $v_{i} \in V_{1}$.
$x_{i, j}$: indicates whether $v_{i} v_{j}$ is monochromatic (1) or not (0).

$$
\left\{x_{i}+x_{j}+x_{i, j} \equiv 1 \quad \text { for every edge } v_{i} v_{j} \in E(G)\right.
$$

Theorem

For an integer $q \geq 1$, deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

For $q=2 \equiv$ feasibility of a system of linear equations over GF[2]:

- $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Want $V(G)=V_{0} \uplus V_{1}$ with $G\left[V_{0}\right], G\left[V_{1}\right]$ odd.
- For every vertex v_{i}, create a binary variable x_{i}.

For every edge $v_{i} v_{j}$, create a binary variable $x_{i, j}$.

- x_{i} : indicates whether $v_{i} \in V_{0}$ or $v_{i} \in V_{1}$.
$x_{i, j}$: indicates whether $v_{i} v_{j}$ is monochromatic (1) or not (0).

$$
\begin{cases}x_{i}+x_{j}+x_{i, j} \equiv 1 & \text { for every edge } v_{i} v_{j} \in E(G) \\ \sum_{j: v_{j} \in N\left(v_{i}\right)} x_{i, j} \equiv 1 & \text { for every vertex } v_{i} \in V(G)\end{cases}
$$

Theorem

For an integer $q \geq 1$, deciding whether $\chi_{\text {odd }}(G) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \geq 3$.

For $q=2 \equiv$ feasibility of a system of linear equations over GF[2]:

- $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Want $V(G)=V_{0} \uplus V_{1}$ with $G\left[V_{0}\right], G\left[V_{1}\right]$ odd.
- For every vertex v_{i}, create a binary variable x_{i}.

For every edge $v_{i} v_{j}$, create a binary variable $x_{i, j}$.

- x_{i} : indicates whether $v_{i} \in V_{0}$ or $v_{i} \in V_{1}$.
$x_{i, j}$: indicates whether $v_{i} v_{j}$ is monochromatic (1) or not (0).

$$
\begin{cases}x_{i}+x_{j}+x_{i, j} \equiv 1 & \text { for every edge } v_{i} v_{j} \in E(G) \\ \sum_{j: v_{j} \in N\left(v_{i}\right)} x_{i, j} \equiv 1 & \text { for every vertex } v_{i} \in V(G)\end{cases}
$$

- $\chi_{\text {odd }}(G) \leq 2 \Longleftrightarrow$ the above system is feasible.

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.
We reduce from q-Coloring.

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.
We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Deciding whether $\chi_{\text {odd }}(G) \leq q$ is NP-complete if $q \geq 3$.

We reduce from q-Coloring. Suppose $q=3$.
\star Any graph $G=(V, E)$ such that $|V|+|E|$ is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Thus, G is 3-colorable $\Longleftrightarrow \chi_{\text {odd }}\left(G^{\prime}\right) \leq 3$.

Theorem

For every graph G with all components of even order we have that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$, and this bound is tight.

Theorem

For every graph G with all components of even order we have that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$, and this bound is tight.
\star Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree.

Theorem

For every graph G with all components of even order we have that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$, and this bound is tight.
\star Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree.

Given G, consider a partition of $V(G)$ into induced odd trees.

Theorem

For every graph G with all components of even order we have that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$, and this bound is tight.
\star Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree.

Let G^{\prime} be obtained from G by contracting each tree to a single vertex.

Theorem

For every graph G with all components of even order we have that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$, and this bound is tight.
\star Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree.

Consider a proper vertex coloring of G^{\prime} using $\chi\left(G^{\prime}\right)$ colors.

Theorem

For every graph G with all components of even order we have that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$, and this bound is tight.
\star Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree.

We have that $\chi_{\text {odd }}(G) \leq \chi\left(G^{\prime}\right)$

Theorem

For every graph G with all components of even order we have that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$, and this bound is tight.
\star Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree.

We have that $\chi_{\text {odd }}(G) \leq \chi\left(G^{\prime}\right) \leq \operatorname{tw}\left(G^{\prime}\right)+1$

Theorem

For every graph G with all components of even order we have that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$, and this bound is tight.
\star Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree.

We have that $\chi_{\mathrm{odd}}(G) \leq \chi\left(G^{\prime}\right) \leq \operatorname{tw}\left(G^{\prime}\right)+1 \leq \operatorname{tw}(G)+1$.

Theorem

For every graph G with all components of even order we have that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$, and this bound is tight.
\star Every graph G with all components of even order admits a vertex partition such that every vertex class induces an odd tree.

Bound is tight: let G be subdivided n-clique with $n \equiv 0,3(\bmod 4)$.

Theorem

If $\mathrm{cw}(G) \leq 2$ (cograph), then $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$, and this bound is tight.

Theorem

If $\mathrm{cw}(G) \leq 2$ (cograph), then $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$, and this bound is tight.
Every n-vertex graph G that admits a join satisfies $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$.

Theorem

If $\mathrm{cw}(G) \leq 2$ (cograph), then $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$, and this bound is tight.
Every n-vertex graph G that admits a join satisfies $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$.

Theorem

If $\mathrm{cw}(G) \leq 2$ (cograph), then $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$, and this bound is tight.
Every n-vertex graph G that admits a join satisfies $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$.

Theorem

If $\mathrm{cw}(G) \leq 2$ (cograph), then $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$, and this bound is tight.
Every n-vertex graph G that admits a join satisfies $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$.

This bound is tight even for cographs:

Theorem

If $\mathrm{cw}(G) \leq 2$ (cograph), then $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$, and this bound is tight.
Every n-vertex graph G that admits a join satisfies $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$.

This bound is tight even for cographs:

Theorem

If $\mathrm{cw}(G) \leq 2$ (cograph), then $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$, and this bound is tight.
Every n-vertex graph G that admits a join satisfies $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$.

This bound is tight even for cographs:

Odd graphs on four vertices: $K_{4}, K_{1,3}$, and $2 K_{2}$.

Theorem

If $\mathrm{cw}(G) \leq 2$ (cograph), then $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$, and this bound is tight.
Every n-vertex graph G that admits a join satisfies $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$.

This bound is tight even for cographs:

Odd graphs on four vertices: $K_{4}, K_{1,3}$, and $2 K_{2}$.
Thus, $\operatorname{mos}\left(K_{2,2,2}\right)=\operatorname{mos}\left(C_{5}^{+}\right)=2$

Theorem

If $\mathrm{cw}(G) \leq 2$ (cograph), then $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$, and this bound is tight.
Every n-vertex graph G that admits a join satisfies $\operatorname{mos}(G) \geq 2 \cdot\left\lceil\frac{n-2}{4}\right\rceil$.

This bound is tight even for cographs:

Odd graphs on four vertices: $K_{4}, K_{1,3}$, and $2 K_{2}$.
Thus, $\operatorname{mos}\left(K_{2,2,2}\right)=\operatorname{mos}\left(C_{5}^{+}\right)=2=2 \cdot\left\lceil\frac{6-2}{4}\right\rceil=2 \cdot\left\lceil\frac{5-2}{4}\right\rceil$.

Next section is...

(1) Introduction

(2) Our results
(3) Some proofs
(4) Further research
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$.
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ?
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm.
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm. $\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some $f ?$
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm. $\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f ? Would imply XP algorithm.
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm. $\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f ? Would imply XP algorithm.
(3) The Chromatic Number problem is W[1]-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f ? Would imply XP algorithm.
(3) The Chromatic Number problem is W [1]-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]
Can their reduction be adapted to computing $\chi_{\text {odd }}(G)$?
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f ? Would imply XP algorithm.
(3) The Chromatic Number problem is W[1]-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]
Can their reduction be adapted to computing $\chi_{\text {odd }}(G)$?
(9) Deciding whether $\chi_{\text {odd }}(G) \leq q$ parameterized by tw:
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f ? Would imply XP algorithm.
(3) The Chromatic Number problem is W[1]-hard param. by cw/rw.

[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing $\chi_{\text {odd }}(G)$?
(9) Deciding whether $\chi_{\text {odd }}(G) \leq q$ parameterized by tw:

- Natural DP algo in time $(2 q)^{\text {tw }} \cdot n^{\mathcal{O}(1)}$
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f ? Would imply XP algorithm.
(3) The Chromatic Number problem is W[1]-hard param. by cw/rw.

[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing $\chi_{\text {odd }}(G)$?
(9) Deciding whether $\chi_{\text {odd }}(G) \leq q$ parameterized by tw:

- Natural DP algo in time $(2 q)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)} \leq(2 \mathrm{tw}+2)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)}$.
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f ? Would imply XP algorithm.
(3) The Chromatic Number problem is W[1]-hard param. by cw/rw.

[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing $\chi_{\text {odd }}(G)$?
(9) Deciding whether $\chi_{\text {odd }}(G) \leq q$ parameterized by tw:

- Natural DP algo in time $(2 q)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)} \leq(2 \mathrm{tw}+2)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)}$.
- It can be proved that $\nexists \mathrm{tw}^{\mathrm{o}(\mathrm{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f ? Would imply XP algorithm.
(3) The Chromatic Number problem is W[1]-hard param. by cw/rw.

[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing $\chi_{\text {odd }}(G)$?
(9) Deciding whether $\chi_{\text {odd }}(G) \leq q$ parameterized by tw:

- Natural DP algo in time $(2 q)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)} \leq(2 \mathrm{tw}+2)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)}$.
- It can be proved that $\nexists \mathrm{tw}^{\mathrm{o}(\mathrm{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
- Right constants under the SETH?
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f ? Would imply XP algorithm.
(3) The Chromatic Number problem is W[1]-hard param. by cw/rw.

[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing $\chi_{\text {odd }}(G)$?
(9) Deciding whether $\chi_{\text {odd }}(G) \leq q$ parameterized by tw:

- Natural DP algo in time $(2 q)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)} \leq(2 \mathrm{tw}+2)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)}$.
- It can be proved that $\nexists \mathrm{tw} \mathrm{w}^{\mathrm{o}(\mathrm{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
- Right constants under the SETH?
(5) We know $\operatorname{mes}(G) \geq n / 2$.
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm.
$\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f ? Would imply XP algorithm.
(3) The Chromatic Number problem is W[1]-hard param. by cw/rw.

[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing $\chi_{\text {odd }}(G)$?
(9) Deciding whether $\chi_{\text {odd }}(G) \leq q$ parameterized by tw:

- Natural DP algo in time $(2 q)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)} \leq(2 \mathrm{tw}+2)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)}$.
- It can be proved that $\nexists \mathrm{tw}^{\mathrm{o}(\mathrm{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
- Right constants under the SETH?
(5) We know $\operatorname{mes}(G) \geq n / 2$. Deciding $\operatorname{mes}(G) \geq n / 2+k$ with param. k ?
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$. $\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm. $\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f ? Would imply XP algorithm.
(3) The Chromatic Number problem is W[1]-hard param. by cw/rw.

[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing $\chi_{\text {odd }}(G)$?
(9) Deciding whether $\chi_{\text {odd }}(G) \leq q$ parameterized by tw:

- Natural DP algo in time $(2 q)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)} \leq(2 \mathrm{tw}+2)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)}$.
- It can be proved that $\nexists \mathrm{tw} \mathrm{w}^{\mathrm{o}(\mathrm{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
- Right constants under the SETH?
(5) We know $\operatorname{mes}(G) \geq n / 2$. Deciding $\operatorname{mes}(G) \geq n / 2+k$ with param. k ?
(0 The problems that we considered can be seen as the "parity version" of Independent Set and q-Coloring.
(1) Algo in time $2^{\mathcal{O}(q \cdot r w)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text {odd }}(G) \leq q$. Computing $\chi_{\text {odd }}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
(2) We proved that $\chi_{\text {odd }}(G) \leq \operatorname{tw}(G)+1$. $\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G))$ for some f ? Would imply FPT algorithm. $\chi_{\text {odd }}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f ? Would imply XP algorithm.
(3) The Chromatic Number problem is W[1]-hard param. by cw/rw.

> [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing $\chi_{\text {odd }}(G)$?
(9) Deciding whether $\chi_{\text {odd }}(G) \leq q$ parameterized by tw:

- Natural DP algo in time $(2 q)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)} \leq(2 \mathrm{tw}+2)^{\mathrm{tw}} \cdot n^{\mathcal{O}(1)}$.
- It can be proved that $\nexists \mathrm{tw} \mathrm{w}^{\mathrm{o}(\mathrm{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
- Right constants under the SETH?
(5) We know $\operatorname{mes}(G) \geq n / 2$. Deciding $\operatorname{mes}(G) \geq n / 2+k$ with param. k ?
(0 The problems that we considered can be seen as the "parity version" of Independent Set and q-Coloring. Other problems?

Gràcies!

