On the complexity of finding large odd induced subgraphs and odd colorings

Ignasi Sau

LIRMM, Université de Montpellier, CNRS, Montpellier, France

Joint work with **Rémy Belmonte**University of Electro-Communications, Chofu, Japan

virtUMA 2020 21-25 septiembre 2020

Outline of the talk

- Introduction
- Our results
- Some proofs
- 4 Further research

Next section is...

- Introduction
- Our results
- Some proofs
- 4 Further research

Theorem (Gallai \sim 1960)

For every graph G, V(G) can be partitioned into two sets

ullet V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even,

Theorem (Gallai \sim 1960)

- V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Theorem (Gallai \sim 1960)

- ullet V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Theorem (Gallai \sim 1960)

- ullet V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Theorem (Gallai \sim 1960)

- V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Theorem (Gallai \sim 1960)

- ullet V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Theorem (Gallai \sim 1960)

- ullet V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Theorem (Gallai \sim 1960)

For every graph G, V(G) can be partitioned into two sets

- V_1 and V_2 such that both $G[V_1]$ and $G[V_2]$ are even, and
- V'_1 and V'_2 such that $G[V'_1]$ is even and $G[V'_2]$ is odd.

Corollary

Every graph G contains an even induced subgraph with at least |V(G)|/2 vertices.

For a graph G, let

mos(G): order of a largest odd induced subgraph of G.

For a graph G, let

mos(G): order of a largest odd induced subgraph of G.

 $\chi_{\text{odd}}(G)$: minimum number of odd induced subgraphs of G that partition V(G).

For a graph G, let

mos(G): order of a largest odd induced subgraph of G.

 $\chi_{\text{odd}}(G)$: minimum number of odd induced subgraphs of G that partition V(G).

For $\chi_{\text{odd}}(G)$ to be well-defined, each connected component of G must have even order.

For a graph G, let

mos(G): order of a largest odd induced subgraph of G.

 $\chi_{\text{odd}}(G)$: minimum number of odd induced subgraphs of G that partition V(G).

For $\chi_{\text{odd}}(G)$ to be well-defined, each connected component of G must have even order.

 $\operatorname{mes}(G)$ and $\chi_{\operatorname{even}}(G)$: symmetric parameters for the even version.

For a graph G, let

mos(G): order of a largest odd induced subgraph of G.

 $\chi_{\text{odd}}(G)$: minimum number of odd induced subgraphs of G that partition V(G).

For $\chi_{\text{odd}}(G)$ to be well-defined, each connected component of G must have even order.

mes(G) and $\chi_{even}(G)$: symmetric parameters for the even version.

Hence, for every graph G on n vertices: $mes(G) \ge n/2$ and $\chi_{even}(G) \le 2$.

For a graph G, let

mos(G): order of a largest odd induced subgraph of G.

 $\chi_{\text{odd}}(G)$: minimum number of odd induced subgraphs of G that partition V(G).

For $\chi_{\text{odd}}(G)$ to be well-defined, each connected component of G must have even order.

mes(G) and $\chi_{even}(G)$: symmetric parameters for the even version.

Hence, for every graph G on n vertices: $mes(G) \ge n/2$ and $\chi_{even}(G) \le 2$.

What about mos(G) and $\chi_{odd}(G)$?

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

• For every "good" G, $mos(G) \ge (1 - o(1))\sqrt{n/6}$.

[Caro. 1994]

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

- For every "good" G, $mos(G) \ge (1 o(1))\sqrt{n/6}$. [Caro. 1994]
- For every "good" G, $mos(G) \ge \frac{cn}{\log n}$ for some c > 0. [Scott. 1992]

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

- For every "good" G, $mos(G) \ge (1 o(1))\sqrt{n/6}$. [Caro. 1994]
- For every "good" G, $mos(G) \ge \frac{cn}{\log n}$ for some c > 0. [Scott. 1992]
- The conjecture has been proved for particular graph classes:
 - Trees.
 - Graphs G with bounded $\chi(G)$.
 - Graphs G with $\Delta(G) \leq 3$.
 - Graphs G with $tw(G) \le 2$.

- [Radcliffe, Scott. 1995]
- [Scott. 1992] [Berman, Wang, Wargo. 1997]
 - [Hou, Yu, Li, Liu. 2018]

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

- For every "good" G, $mos(G) \ge (1 o(1))\sqrt{n/6}$. [Caro. 1994]
- For every "good" G, $mos(G) \ge \frac{cn}{\log n}$ for some c > 0. [Scott. 1992]
- The conjecture has been proved for particular graph classes:
 - Trees.
 - Graphs G with bounded $\chi(G)$.
 - Graphs G with $\Delta(G) \leq 3$.
 - Graphs G with tw(G) < 2.

- [Radcliffe, Scott. 1995]
- [Scott. 1992] [Berman, Wang, Wargo. 1997]
 - [Hou, Yu, Li, Liu. 2018]
 - [Hou, Yu, Li, Liu. 2010

In these articles, they obtain best possible constants c > 0.

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

- For every "good" G, $mos(G) \ge (1 o(1))\sqrt{n/6}$. [Caro. 1994]
- For every "good" G, $mos(G) \ge \frac{cn}{\log n}$ for some c > 0. [Scott. 1992]
- The conjecture has been proved for particular graph classes:
 - Trees.
 - Graphs G with bounded $\chi(G)$.
 - Graphs G with $\Delta(G) \leq 3$.
 - Graphs G with $tw(G) \leq 2$.

- [Radcliffe, Scott. 1995]
- [Scott. 1992]
- [Berman, Wang, Wargo. 1997]
 - [Hou, Yu, Li, Liu. 2018]

In these articles, they obtain best possible constants c > 0.

The conjecture is still open.

For $\chi_{\text{odd}}(G)$ to be well-defined, each connected component of G must have even order.

For $\chi_{\text{odd}}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.

[Scott. 2001]

For $\chi_{\text{odd}}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.

[Scott. 2001]

Upper and lower bounds on $\chi_{\text{odd}}(G)$:

[Scott. 2001]

For $\chi_{\text{odd}}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.

[Scott. 2001]

Upper and lower bounds on $\chi_{odd}(G)$:

[Scott. 2001]

• For every "good" graph G on n vertices,

$$\chi_{\operatorname{odd}}(G) \leq \frac{cn}{\sqrt{\log\log n}} = o(n).$$

For $\chi_{\text{odd}}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.

[Scott. 2001]

Upper and lower bounds on $\chi_{\text{odd}}(G)$:

[Scott. 2001]

• For every "good" graph G on n vertices,

$$\chi_{\text{odd}}(G) \leq \frac{cn}{\sqrt{\log\log n}} = o(n).$$

• There are "good" graphs G on n vertices for which

$$\chi_{\text{odd}}(G) \geq (1+o(1))\sqrt{2n} = \Omega(\sqrt{n}).$$

For $\chi_{\text{odd}}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.

[Scott. 2001]

Upper and lower bounds on $\chi_{odd}(G)$:

[Scott. 2001]

• For every "good" graph G on n vertices,

$$\chi_{\text{odd}}(G) \leq \frac{cn}{\sqrt{\log\log n}} = o(n).$$

There are "good" graphs G on n vertices for which

$$\chi_{\mathsf{odd}}(G) \geq (1 + o(1))\sqrt{2n} = \Omega(\sqrt{n}).$$

$$G = \text{subdivided } n\text{-clique with } n \equiv 0, 3 \pmod{4} \equiv 0$$

For $\chi_{\text{odd}}(G)$ to be well-defined, each connected component of G must have even order.

This necessary condition is also sufficient.

[Scott. 2001]

Upper and lower bounds on $\chi_{odd}(G)$:

[Scott. 2001]

• For every "good" graph G on n vertices,

$$\chi_{\text{odd}}(G) \leq \frac{cn}{\sqrt{\log\log n}} = o(n).$$

There are "good" graphs G on n vertices for which

$$\chi_{\mathsf{odd}}(G) \geq (1 + o(1))\sqrt{2n} = \Omega(\sqrt{n}).$$

$$G = \text{subdivided } n\text{-clique with } n \equiv 0, 3 \pmod{4} \equiv 2 \pmod{4}$$

And what about the complexity of computing these parameters?

And what about the complexity of computing these parameters?

Computing mes(G) and mos(G) is NP-hard.

[Cai, Yang. 2011]

And what about the complexity of computing these parameters?

Computing mes(G) and mos(G) is NP-hard.

[Cai, Yang. 2011]

For every graph G, $\chi_{\text{even}}(G) \leq 2$, so it is easy.

And what about the complexity of computing these parameters?

Computing mes(G) and mos(G) is NP-hard.

[Cai, Yang. 2011]

For every graph G, $\chi_{\text{even}}(G) \leq 2$, so it is easy.

As for $\chi_{\text{odd}}(G)$, no complexity results were known so far.

And what about the complexity of computing these parameters?

Computing mes(G) and mos(G) is NP-hard.

[Cai, Yang. 2011]

For every graph G, $\chi_{\text{even}}(G) \leq 2$, so it is easy.

As for $\chi_{\text{odd}}(G)$, no complexity results were known so far.

Our goal Computational aspects of the parameters mos and χ_{odd} .

Next section is...

- Introduction
- 2 Our results
- Some proofs
- Further research

For an integer $q \ge 1$, we prove that deciding whether $\chi_{\text{odd}}(G) \le q$ is

For an integer $q \ge 1$, we prove that deciding whether $\chi_{\text{odd}}(G) \le q$ is

- polynomial-time solvable if $q \le 2$, and
- NP-complete if $q \ge 3$.

For an integer $q \geq 1$, we prove that deciding whether $\chi_{\sf odd}({\cal G}) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

Since computing mos(G) and $\chi_{odd}(G)$ are NP-hard, we focus on its parameterized complexity,

For an integer $q \geq 1$, we prove that deciding whether $\chi_{\sf odd}({\cal G}) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

Since computing mos(G) and $\chi_{odd}(G)$ are NP-hard, we focus on its parameterized complexity, in particular on structural parameters.

For an integer $q \geq 1$, we prove that deciding whether $\chi_{\sf odd}({\cal G}) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

Since computing mos(G) and $\chi_{odd}(G)$ are NP-hard, we focus on its parameterized complexity, in particular on structural parameters.

For an integer $q \geq 1$, we prove that deciding whether $\chi_{\sf odd}({\it G}) \leq q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

Since computing mos(G) and $\chi_{odd}(G)$ are NP-hard, we focus on its parameterized complexity, in particular on structural parameters.

- $2^{\mathcal{O}(\text{rw})} \cdot n^{\mathcal{O}(1)}$ for computing mes(G) and mos(G),
- $2^{\mathcal{O}(q \cdot rw)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\mathsf{odd}}(G) \leq q$,

- $2^{\mathcal{O}(\text{rw})} \cdot n^{\mathcal{O}(1)}$ for computing mes(G) and mos(G),
- $2^{\mathcal{O}(q \cdot rw)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$,

for an n-vertex graph G, given a decomposition tree of width at most rw.

• Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]

- $2^{\mathcal{O}(\text{rw})} \cdot n^{\mathcal{O}(1)}$ for computing mes(G) and mos(G),
- $2^{\mathcal{O}(q \cdot rw)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$,

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.

- $2^{\mathcal{O}(\text{rw})} \cdot n^{\mathcal{O}(1)}$ for computing mes(G) and mos(G),
- $2^{\mathcal{O}(q \cdot rw)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$,

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(\text{rw})}$ optimal under the ETH? ($\sharp 2^{o(n)}$ algo for 3-SAT)

- $2^{\mathcal{O}(\text{rw})} \cdot n^{\mathcal{O}(1)}$ for computing mes(G) and mos(G),
- $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$,

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(\text{rw})}$ optimal under the ETH? ($\sharp 2^{o(n)}$ algo for 3-SAT)
 - For deciding whether $\chi_{\text{odd}}(G) \leq q$, our NP-hardness reduction implies that $\nexists 2^{\circ(n)}$ algo under the ETH

- $2^{\mathcal{O}(\text{rw})} \cdot n^{\mathcal{O}(1)}$ for computing mes(G) and mos(G),
- $2^{\mathcal{O}(q \cdot rw)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$,

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(\text{rw})}$ optimal under the ETH? ($\sharp 2^{o(n)}$ algo for 3-SAT)
 - For deciding whether $\chi_{\text{odd}}(G) \leq q$, our NP-hardness reduction implies that $\nexists \ 2^{o(n)}$ algo under the ETH $\Rightarrow \ \nexists \ 2^{o(rw)} \cdot n^{\mathcal{O}(1)} \ \checkmark$

- $2^{\mathcal{O}(\text{rw})} \cdot n^{\mathcal{O}(1)}$ for computing mes(G) and mos(G),
- $2^{\mathcal{O}(q \cdot rw)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$,

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(\text{rw})}$ optimal under the ETH? ($\sharp 2^{o(n)}$ algo for 3-SAT)
 - For deciding whether $\chi_{\text{odd}}(G) \leq q$, our NP-hardness reduction implies that $\nexists \ 2^{o(n)}$ algo under the ETH $\Rightarrow \ \nexists \ 2^{o(rw)} \cdot n^{\mathcal{O}(1)} \ \checkmark$
 - For computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$, existing NP-hardness reduction implies only that $\nexists 2^{o(\sqrt{n})}$ algo under the ETH. [Cai, Yang. 2011]

- $2^{\mathcal{O}(\text{rw})} \cdot n^{\mathcal{O}(1)}$ for computing mes(G) and mos(G),
- $2^{\mathcal{O}(q \cdot rw)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$,

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(\text{rw})}$ optimal under the ETH? ($\sharp 2^{o(n)}$ algo for 3-SAT)
 - For deciding whether $\chi_{\text{odd}}(G) \leq q$, our NP-hardness reduction implies that $\nexists \ 2^{o(n)}$ algo under the ETH $\Rightarrow \ \nexists \ 2^{o(rw)} \cdot n^{\mathcal{O}(1)} \ \checkmark$
 - For computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$, existing NP-hardness reduction implies only that $\frac{1}{2}2^{o(\sqrt{n})}$ algo under the ETH. [Cai, Yang. 2011]
 - We provide a linear NP-hardness reduction for mes(G) and mos(G),

- $2^{\mathcal{O}(\text{rw})} \cdot n^{\mathcal{O}(1)}$ for computing mes(G) and mos(G),
- $2^{\mathcal{O}(q \cdot rw)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$,

for an *n*-vertex graph *G*, given a decomposition tree of width at most rw.

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(\text{rw})}$ optimal under the ETH? ($\sharp 2^{o(n)}$ algo for 3-SAT)
 - For deciding whether $\chi_{\text{odd}}(G) \leq q$, our NP-hardness reduction implies that $\nexists \ 2^{o(n)}$ algo under the ETH $\Rightarrow \ \nexists \ 2^{o(rw)} \cdot n^{\mathcal{O}(1)}$ \checkmark
 - For computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$, existing NP-hardness reduction implies only that $\nexists 2^{o(\sqrt{n})}$ algo under the ETH. [Cai, Yang. 2011]

We provide a linear NP-hardness reduction for mes(G) and mos(G), hence $\frac{1}{2}2^{o(n)}$ algo under ETH

- $2^{\mathcal{O}(\text{rw})} \cdot n^{\mathcal{O}(1)}$ for computing mes(G) and mos(G),
- $2^{\mathcal{O}(q \cdot rw)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$,

for an n-vertex graph G, given a decomposition tree of width at most rw.

- Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
- First algorithms in time $2^{o(rw^2)} \cdot n^{\mathcal{O}(1)}$ for an NP-hard problem.
- Is the function $2^{\mathcal{O}(\text{rw})}$ optimal under the ETH? ($\sharp 2^{o(n)}$ algo for 3-SAT)
 - For deciding whether $\chi_{\text{odd}}(G) \leq q$, our NP-hardness reduction implies that $\nexists \ 2^{o(n)}$ algo under the ETH $\Rightarrow \ \nexists \ 2^{o(rw)} \cdot n^{\mathcal{O}(1)}$ \checkmark
 - For computing $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$, existing NP-hardness reduction implies only that $\nexists 2^{o(\sqrt{n})}$ algo under the ETH. [Cai, Yang. 2011]

We provide a linear NP-hardness reduction for $\operatorname{mes}(G)$ and $\operatorname{mos}(G)$, hence $\nexists 2^{o(n)}$ algo under ETH $\Rightarrow \nexists 2^{o(n)} \cdot n^{\mathcal{O}(1)} \checkmark$

Finally, we provide bounds on the parameters $\chi_{odd}(G)$ and mos(G).

Finally, we provide bounds on the parameters $\chi_{odd}(G)$ and mos(G).

lacktriangledown We prove that, for every graph G with all components of even order,

$$\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$$

Finally, we provide bounds on the parameters $\chi_{\text{odd}}(G)$ and mos(G).

lacktriangledown We prove that, for every graph G with all components of even order,

$$\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$$

This bound is tight and has some consequences.

Finally, we provide bounds on the parameters $\chi_{\text{odd}}(G)$ and mos(G).

lacktriangledown We prove that, for every graph G with all components of even order,

$$\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$$

This bound is tight and has some consequences.

Recall the "folklore" conjecture about mos(G):

Conjecture

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

Finally, we provide bounds on the parameters $\chi_{odd}(G)$ and mos(G).

lacktriangle We prove that, for every graph G with all components of even order,

$$\chi_{\mathsf{odd}}(\mathit{G}) \leq \mathsf{tw}(\mathit{G}) + 1.$$

This bound is tight and has some consequences.

Recall the "folklore" conjecture about mos(G):

Conjecture

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

• \mathcal{G}_k : graphs of treewidth at most k without isolated vertices.

Finally, we provide bounds on the parameters $\chi_{\text{odd}}(G)$ and mos(G).

lacktriangle We prove that, for every graph G with all components of even order,

$$\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$$

This bound is tight and has some consequences.

Recall the "folklore" conjecture about mos(G):

Conjecture

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

- \mathcal{G}_k : graphs of treewidth at most k without isolated vertices.
- $\bullet \ \ c_k = \min_{G \in \mathcal{G}_k} \frac{\mathsf{mos}(G)}{|V(G)|}.$

Finally, we provide bounds on the parameters $\chi_{odd}(G)$ and mos(G).

lacktriangle We prove that, for every graph G with all components of even order,

$$\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$$

This bound is tight and has some consequences.

Recall the "folklore" conjecture about mos(G):

Conjecture

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

- \mathcal{G}_k : graphs of treewidth at most k without isolated vertices.
- $\bullet \ \ c_k = \min_{G \in \mathcal{G}_k} \frac{\mathsf{mos}(G)}{|V(G)|}.$
- So, $c_k > 0$ if and only if the conjecture is true for \mathcal{G}_k .

Finally, we provide bounds on the parameters $\chi_{\text{odd}}(G)$ and mos(G).

lacktriangledown We prove that, for every graph G with all components of even order,

$$\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$$

This bound is tight and has some consequences.

Recall the "folklore" conjecture about mos(G):

Conjecture

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

- \mathcal{G}_k : graphs of treewidth at most k without isolated vertices.
- $c_k = \min_{G \in \mathcal{G}_k} \frac{\max(G)}{|V(G)|}$.
- So, $c_k > 0$ if and only if the conjecture is true for G_k .
- It is known that $c_k \ge \frac{1}{2(k+1)}$.

[Scott. 1992]

Finally, we provide bounds on the parameters $\chi_{\text{odd}}(G)$ and mos(G).

lacktriangledown We prove that, for every graph G with all components of even order,

$$\chi_{\mathsf{odd}}(G) \leq \mathsf{tw}(G) + 1.$$

This bound is tight and has some consequences.

Recall the "folklore" conjecture about mos(G):

Conjecture

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

- \mathcal{G}_k : graphs of treewidth at most k without isolated vertices.
- $\bullet \ \ c_k = \min_{G \in \mathcal{G}_k} \frac{\mathsf{mos}(G)}{|V(G)|}.$
- So, $c_k > 0$ if and only if the conjecture is true for G_k .
- It is known that $c_k \geq \frac{1}{2(k+1)}$.

[Scott. 1992]

• Our bound implies that $c_k \geq \frac{1}{k+1}$.

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

Proved for particular graph classes, with best possible constant c > 0:

- Trees. [Radclif
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $tw(G) \leq 2$.

[Radcliffe, Scott. 1995]

[Scott. 1992]

[Berman, Wang, Wargo. 1997]

[Hou, Yu, Li, Liu. 2018]

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

Proved for particular graph classes, with best possible constant c > 0:

- Trees. Radcliffe, Scott, 1
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $tw(G) \leq 2$.

[Radcliffe, Scott. 1995]

[Scott. 1992]

[Berman, Wang, Wargo. 1997]

[Hou, Yu, Li, Liu. 2018]

• We prove that if $cw(G) \le 2$ (cographs), then

$$mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$$

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

Proved for particular graph classes, with best possible constant c > 0:

- Trees. [Radcliffe, Scott, 1
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $tw(G) \leq 2$.

[Radcliffe, Scott. 1995]

[Scott. 1992]

[Berman, Wang, Wargo. 1997]

[Hou, Yu, Li, Liu. 2018]

• We prove that if $cw(G) \le 2$ (cographs), then

$$mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$$
, and this bound is tight.

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

Proved for particular graph classes, with best possible constant c > 0:

- Trees.
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$.
- Graphs G with $tw(G) \leq 2$.

- [Radcliffe, Scott. 1995]
 - [Scott. 1992]
- [Berman, Wang, Wargo. 1997]
 - [Hou, Yu, Li, Liu. 2018]
- We prove that if $cw(G) \le 2$ (cographs), then

$$mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$$
, and this bound is tight.

• We prove that, if G is a cograph, then $\chi_{\text{odd}}(G) \leq 3$, and this is tight.

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

Proved for particular graph classes, with best possible constant c > 0:

- Trees. [Radcliffe, Scott. 1995]
- Graphs G with bounded $\chi(G)$.
- Graphs G with $\Delta(G) \leq 3$. [Berman, Wang, Wargo. 1997]
- Graphs G with $tw(G) \leq 2$.

[Hou, Yu, Li, Liu. 2018]

[Scott. 1992]

• We prove that if $cw(G) \le 2$ (cographs), then

$$mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$$
, and this bound is tight.

- We prove that, if G is a cograph, then $\chi_{odd}(G) \leq 3$, and this is tight.
- Note that cographs are exactly P₄-free graphs.

There exists a constant c > 0 such that, for every n-vertex graph G without isolated vertices, $mos(G) \ge c \cdot n$.

Proved for particular graph classes, with best possible constant c > 0:

- Trees. [Radcliffe, Scott. 1995]
- Graphs G with bounded $\chi(G)$. [Scott. 1992]
- Graphs G with $\Delta(G) \leq 3$. [Berman, Wang, Wargo. 1997]
- Graphs G with $tw(G) \leq 2$. [Hou, Yu, Li, Liu. 2018]
- We prove that if $cw(G) \le 2$ (cographs), then

$$mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$$
, and this bound is tight.

- We prove that, if G is a cograph, then $\chi_{odd}(G) \leq 3$, and this is tight.
- Note that cographs are exactly P_4 -free graphs. We show that $\chi_{\rm odd}$ is unbounded for P_5 -free graphs.

Next section is...

- Introduction
- Our results
- 3 Some proofs
- 4 Further research

For an integer $q \ge 1$, deciding whether $\chi_{\text{odd}}(G) \le q$ is

- polynomial-time solvable if $q \le 2$, and
- NP-complete if $q \ge 3$.

For an integer $q \ge 1$, deciding whether $\chi_{\text{odd}}(G) \le q$ is

- polynomial-time solvable if $q \le 2$, and
- NP-complete if $q \ge 3$.

For q = 1 the problem is trivial: G needs to be an odd graph itself.

For an integer $q \ge 1$, deciding whether $\chi_{\text{odd}}(G) \le q$ is

- polynomial-time solvable if $q \le 2$, and
- NP-complete if $q \ge 3$.

For an integer $q \ge 1$, deciding whether $\chi_{\text{odd}}(G) \le q$ is

- polynomial-time solvable if $q \le 2$, and
- NP-complete if $q \ge 3$.

For $q = 2 \equiv$ feasibility of a system of linear equations over GF[2]:

• $V(G) = \{v_1, \ldots, v_n\}.$

For an integer $q \ge 1$, deciding whether $\chi_{\text{odd}}(G) \le q$ is

- polynomial-time solvable if $q \le 2$, and
- NP-complete if $q \ge 3$.

For $q = 2 \equiv$ feasibility of a system of linear equations over GF[2]:

• $V(G) = \{v_1, \dots, v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.

For an integer $q \ge 1$, deciding whether $\chi_{\text{odd}}(G) \le q$ is

- polynomial-time solvable if $q \le 2$, and
- NP-complete if $q \ge 3$.

- $V(G) = \{v_1, \dots, v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.
- For every vertex v_i, create a binary variable x_i.
 For every edge v_iv_i, create a binary variable x_{i,j}.

For an integer $q \ge 1$, deciding whether $\chi_{\text{odd}}(G) \le q$ is

- polynomial-time solvable if $q \le 2$, and
- NP-complete if $q \ge 3$.

- $V(G) = \{v_1, \dots, v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.
- For every vertex v_i , create a binary variable x_i . For every edge $v_i v_j$, create a binary variable $x_{i,j}$.
- x_i : indicates whether $v_i \in V_0$ or $v_i \in V_1$.

For an integer $q \ge 1$, deciding whether $\chi_{\text{odd}}(G) \le q$ is

- polynomial-time solvable if $q \le 2$, and
- NP-complete if $q \ge 3$.

- $V(G) = \{v_1, \dots, v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.
- For every vertex v_i , create a binary variable x_i . For every edge $v_i v_j$, create a binary variable $x_{i,j}$.
- x_i : indicates whether $v_i \in V_0$ or $v_i \in V_1$. $x_{i,j}$: indicates whether $v_i v_j$ is monochromatic (1) or not (0).

For an integer $q \ge 1$, deciding whether $\chi_{\text{odd}}(G) \le q$ is

- polynomial-time solvable if $q \le 2$, and
- NP-complete if $q \ge 3$.

- $V(G) = \{v_1, \dots, v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.
- For every vertex v_i , create a binary variable x_i . For every edge $v_i v_i$, create a binary variable $x_{i,j}$.
- x_i : indicates whether $v_i \in V_0$ or $v_i \in V_1$. $x_{i,j}$: indicates whether $v_i v_j$ is monochromatic (1) or not (0).

$$\begin{cases} x_i + x_j + x_{i,j} \equiv 1 & \text{for every edge } v_i v_j \in E(G) \end{cases}$$

For an integer $q \ge 1$, deciding whether $\chi_{\text{odd}}(G) \le q$ is

- polynomial-time solvable if $q \leq 2$, and
- NP-complete if $q \ge 3$.

- $V(G) = \{v_1, \dots, v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.
- For every vertex v_i , create a binary variable x_i . For every edge $v_i v_j$, create a binary variable $x_{i,j}$.
- x_i : indicates whether $v_i \in V_0$ or $v_i \in V_1$. $x_{i,j}$: indicates whether $v_i v_j$ is monochromatic (1) or not (0).

$$\begin{cases} x_i + x_j + x_{i,j} \equiv 1 & \text{for every edge } v_i v_j \in E(G) \\ \sum_{j:v_i \in N(v_i)} x_{i,j} \equiv 1 & \text{for every vertex } v_i \in V(G) \end{cases}$$

For an integer $q \ge 1$, deciding whether $\chi_{\text{odd}}(G) \le q$ is

- polynomial-time solvable if $q \le 2$, and
- NP-complete if $q \ge 3$.

For $q = 2 \equiv$ feasibility of a system of linear equations over GF[2]:

- $V(G) = \{v_1, \dots, v_n\}$. Want $V(G) = V_0 \uplus V_1$ with $G[V_0], G[V_1]$ odd.
- For every vertex v_i , create a binary variable x_i . For every edge $v_i v_j$, create a binary variable $x_{i,j}$.
- x_i : indicates whether $v_i \in V_0$ or $v_i \in V_1$. $x_{i,j}$: indicates whether $v_i v_j$ is monochromatic (1) or not (0).

$$\begin{cases} x_i + x_j + x_{i,j} \equiv 1 & \text{for every edge } v_i v_j \in E(G) \\ \sum_{j: v_j \in N(v_i)} x_{i,j} \equiv 1 & \text{for every vertex } v_i \in V(G) \end{cases}$$

• $\chi_{\text{odd}}(G) \leq 2 \iff$ the above system is feasible.

We reduce from q-Coloring.

We reduce from q-Coloring. Suppose q = 3.

We reduce from q-Coloring. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

We reduce from *q*-Coloring. Suppose q = 3.

We reduce from q-Coloring. Suppose q = 3.

We reduce from *q*-Coloring. Suppose q = 3.

We reduce from q-Coloring. Suppose q = 3.

We reduce from *q*-COLORING. Suppose q = 3.

★ Any graph G = (V, E) such that |V| + |E| is even admits an orientation of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

Thus, G is 3-colorable $\iff \chi_{odd}(G') \leq 3$.

For every graph G with all components of even order we have that $\chi_{\text{odd}}(G) \leq \mathsf{tw}(G) + 1$, and this bound is **tight**.

For every graph G with all components of even order we have that $\chi_{\mathrm{odd}}(G) \leq \mathsf{tw}(G) + 1$, and this bound is tight.

★ Every graph *G* with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

For every graph G with all components of even order we have that $\chi_{\text{odd}}(G) \leq \mathsf{tw}(G) + 1$, and this bound is tight.

★ Every graph *G* with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

Given G, consider a partition of V(G) into induced odd trees.

For every graph G with all components of even order we have that $\chi_{\text{odd}}(G) \leq \mathsf{tw}(G) + 1$, and this bound is tight.

★ Every graph *G* with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

Let G' be obtained from G by contracting each tree to a single vertex.

For every graph G with all components of even order we have that $\chi_{\text{odd}}(G) \leq \mathsf{tw}(G) + 1$, and this bound is tight.

★ Every graph *G* with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

Consider a proper vertex coloring of G' using $\chi(G')$ colors.

For every graph G with all components of even order we have that $\chi_{\text{odd}}(G) \leq \mathsf{tw}(G) + 1$, and this bound is tight.

★ Every graph *G* with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

We have that $\chi_{\text{odd}}(G) \leq \chi(G')$

For every graph G with all components of even order we have that $\chi_{\mathrm{odd}}(G) \leq \mathsf{tw}(G) + 1$, and this bound is tight.

★ Every graph *G* with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

We have that $\chi_{\text{odd}}(G) \leq \chi(G') \leq \text{tw}(G') + 1$

For every graph G with all components of even order we have that $\chi_{\text{odd}}(G) \leq \mathsf{tw}(G) + 1$, and this bound is tight.

★ Every graph *G* with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

We have that $\chi_{\sf odd}(G) \leq \chi(G') \leq {\sf tw}(G') + 1 \leq {\sf tw}(G) + 1$.

For every graph G with all components of even order we have that $\chi_{\text{odd}}(G) \leq \mathsf{tw}(G) + 1$, and this bound is tight.

★ Every graph *G* with all components of even order admits a vertex partition such that every vertex class induces an odd tree. [Scott. 2001]

Bound is tight: let *G* be subdivided *n*-clique with $n \equiv 0, 3 \pmod{4}$.

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left \lceil \frac{n-2}{4} \right \rceil$, and this bound is tight.

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left \lceil \frac{n-2}{4} \right \rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$.

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left \lceil \frac{n-2}{4} \right \rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$.

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left \lceil \frac{n-2}{4} \right \rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$.

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left \lceil \frac{n-2}{4} \right \rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$.

This bound is tight even for cographs:

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left \lceil \frac{n-2}{4} \right \rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$.

This bound is tight even for cographs:

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left \lceil \frac{n-2}{4} \right \rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$.

This bound is tight even for cographs:

Odd graphs on four vertices: K_4 , $K_{1,3}$, and $2K_2$.

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left \lceil \frac{n-2}{4} \right \rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$.

This bound is tight even for cographs:

Odd graphs on four vertices: K_4 , $K_{1,3}$, and $2K_2$.

Thus, $mos(K_{2,2,2}) = mos(C_5^+) = 2$

If $cw(G) \le 2$ (cograph), then $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$, and this bound is tight.

Every *n*-vertex graph *G* that admits a join satisfies $mos(G) \ge 2 \cdot \left\lceil \frac{n-2}{4} \right\rceil$.

This bound is tight even for cographs:

Odd graphs on four vertices: K_4 , $K_{1,3}$, and $2K_2$.

Thus,
$$\operatorname{mos}(K_{2,2,2}) = \operatorname{mos}(C_5^+) = 2 = 2 \cdot \left\lceil \frac{6-2}{4} \right\rceil = 2 \cdot \left\lceil \frac{5-2}{4} \right\rceil$$
.

Next section is...

- Introduction
- Our results
- Some proofs
- 4 Further research

• Algo in time $2^{\mathcal{O}(q \cdot rw)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$.

• Algo in time $2^{\mathcal{O}(q \cdot rw)} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\text{odd}}(G) \leq \text{tw}(G) + 1$.

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\text{odd}}(G) \leq \text{tw}(G) + 1$. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G))$ for some f?

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\text{odd}}(G) \leq \text{tw}(G) + 1$. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G))$ for some f? Would imply FPT algorithm.

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\text{odd}}(G) \leq \text{tw}(G) + 1$. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G))$ for some f? Would imply FPT algorithm. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G)) \cdot \log n$ for some f?

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\mathrm{odd}}(G) \leq \mathrm{tw}(G) + 1$. $\chi_{\mathrm{odd}}(G) \leq f(\mathrm{rw}(G))$ for some f? Would imply FPT algorithm. $\chi_{\mathrm{odd}}(G) \leq f(\mathrm{rw}(G)) \cdot \log n$ for some f? Would imply XP algorithm.

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\text{odd}}(G) \leq \text{tw}(G) + 1$. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G))$ for some f? Would imply FPT algorithm. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G)) \cdot \log n$ for some f? Would imply XP algorithm.
- ⑤ The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\text{odd}}(G) \leq \text{tw}(G) + 1$. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G))$ for some f? Would imply FPT algorithm. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G)) \cdot \log n$ for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw.
 [Fomin, Golovach, Lokshtanov, Saurabh. 2010]
 Can their reduction be adapted to computing \(\chi_{\text{odd}}(G)\)?

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\operatorname{odd}}(G) \leq \operatorname{tw}(G) + 1$. $\chi_{\operatorname{odd}}(G) \leq f(\operatorname{rw}(G))$ for some f? Would imply FPT algorithm. $\chi_{\operatorname{odd}}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010] Can their reduction be adapted to computing $\chi_{\text{odd}}(G)$?
- **1** Deciding whether $\chi_{\text{odd}}(G) \leq q$ parameterized by tw:

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\text{odd}}(G) \leq \text{tw}(G) + 1$. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G))$ for some f? Would imply FPT algorithm. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G)) \cdot \log n$ for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]
 Can their reduction be adapted to computing χ_{odd}(G)?
- **1** Deciding whether $\chi_{\text{odd}}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{\text{tw}} \cdot n^{\mathcal{O}(1)}$

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\operatorname{odd}}(G) \leq \operatorname{tw}(G) + 1$. $\chi_{\operatorname{odd}}(G) \leq f(\operatorname{rw}(G))$ for some f? Would imply FPT algorithm. $\chi_{\operatorname{odd}}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw. [Fomin, Golovach, Lokshtanov, Saurabh. 2010]
 Can their reduction be adapted to computing χ_{odd}(G)?
- ① Deciding whether $\chi_{\sf odd}(G) \leq q$ parameterized by tw:

 Natural DP algo in time $(2q)^{\sf tw} \cdot n^{\mathcal{O}(1)} \leq (2{\sf tw} + 2)^{\sf tw} \cdot n^{\mathcal{O}(1)}$.

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\text{odd}}(G) \leq \text{tw}(G) + 1$. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G))$ for some f? Would imply FPT algorithm. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G)) \cdot \log n$ for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw.
 [Fomin, Golovach, Lokshtanov, Saurabh. 2010]
 Can their reduction be adapted to computing \(\chi_{\text{odd}}(G)\)?
- Deciding whether $\chi_{\text{odd}}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{tw} \cdot n^{\mathcal{O}(1)} \leq (2tw + 2)^{tw} \cdot n^{\mathcal{O}(1)}$.
 - It can be proved that $\frac{1}{2}$ tw^{o(tw)} · $n^{O(1)}$ under the ETH \checkmark

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\text{odd}}(G) \leq \text{tw}(G) + 1$. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G))$ for some f? Would imply FPT algorithm. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G)) \cdot \log n$ for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw.
 [Fomin, Golovach, Lokshtanov, Saurabh. 2010]
 Can their reduction be adapted to computing \(\chi_{\text{odd}}(G)\)?
- **9** Deciding whether $\chi_{\text{odd}}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{tw} \cdot n^{\mathcal{O}(1)} \leq (2tw + 2)^{tw} \cdot n^{\mathcal{O}(1)}$.
 - It can be proved that $\frac{1}{2}$ tw^{o(tw)} · $n^{O(1)}$ under the ETH \checkmark
 - Right constants under the SETH?

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\text{odd}}(G) \leq \text{tw}(G) + 1$. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G))$ for some f? Would imply FPT algorithm. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G)) \cdot \log n$ for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw.
 [Fomin, Golovach, Lokshtanov, Saurabh. 2010]
 Can their reduction be adapted to computing \(\chi_{\text{odd}}(G)\)?
- **1** Deciding whether $\chi_{\text{odd}}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{\text{tw}} \cdot n^{\mathcal{O}(1)} \leq (2\text{tw} + 2)^{\text{tw}} \cdot n^{\mathcal{O}(1)}$.
 - It can be proved that $\nexists \operatorname{tw}^{o(\operatorname{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
 - Right constants under the SETH?

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\text{odd}}(G) \leq \text{tw}(G) + 1$. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G))$ for some f? Would imply FPT algorithm. $\chi_{\text{odd}}(G) \leq f(\text{rw}(G)) \cdot \log n$ for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw.
 [Fomin, Golovach, Lokshtanov, Saurabh. 2010]
 Can their reduction be adapted to computing \(\chi_{\text{odd}}(G)\)?
- **①** Deciding whether $\chi_{\text{odd}}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{tw} \cdot n^{\mathcal{O}(1)} \leq (2tw + 2)^{tw} \cdot n^{\mathcal{O}(1)}$.
 - It can be proved that $\nexists \operatorname{tw}^{o(\operatorname{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
 - Right constants under the SETH?
- **1** We know $\operatorname{mes}(G) \ge n/2$. Deciding $\operatorname{mes}(G) \ge n/2 + k$ with param. k?

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- $\begin{tabular}{ll} \begin{tabular}{ll} \be$
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw.
 [Fomin, Golovach, Lokshtanov, Saurabh. 2010]
 Can their reduction be adapted to computing \(\chi_{\text{odd}}(G)\)?
- **1** Deciding whether $\chi_{\text{odd}}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{\text{tw}} \cdot n^{\mathcal{O}(1)} \leq (2\text{tw} + 2)^{\text{tw}} \cdot n^{\mathcal{O}(1)}$.
 - It can be proved that $\nexists \operatorname{tw}^{o(\operatorname{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
 - Right constants under the SETH?
- **1** We know $mes(G) \ge n/2$. Deciding $mes(G) \ge n/2 + k$ with param. k?
- The problems that we considered can be seen as the "parity version" of INDEPENDENT SET and *q*-COLORING.

- Algo in time $2^{\mathcal{O}(q \cdot \text{rw})} \cdot n^{\mathcal{O}(1)}$ for deciding whether $\chi_{\text{odd}}(G) \leq q$. Computing $\chi_{\text{odd}}(G)$ parameterized by rw is FPT, W[1]-hard, XP?
- ② We proved that $\chi_{\operatorname{odd}}(G) \leq \operatorname{tw}(G) + 1$. $\chi_{\operatorname{odd}}(G) \leq f(\operatorname{rw}(G))$ for some f? Would imply FPT algorithm. $\chi_{\operatorname{odd}}(G) \leq f(\operatorname{rw}(G)) \cdot \log n$ for some f? Would imply XP algorithm.
- The CHROMATIC NUMBER problem is W[1]-hard param. by cw/rw.
 [Fomin, Golovach, Lokshtanov, Saurabh. 2010]
 Can their reduction be adapted to computing \(\chi_{\text{odd}}(G)\)?
- **1** Deciding whether $\chi_{\text{odd}}(G) \leq q$ parameterized by tw:
 - Natural DP algo in time $(2q)^{tw} \cdot n^{\mathcal{O}(1)} \leq (2tw + 2)^{tw} \cdot n^{\mathcal{O}(1)}$.
 - It can be proved that $\nexists \operatorname{tw}^{o(\operatorname{tw})} \cdot n^{\mathcal{O}(1)}$ under the ETH \checkmark
 - Right constants under the SETH?
- **1** We know $mes(G) \ge n/2$. Deciding $mes(G) \ge n/2 + k$ with param. k?
- The problems that we considered can be seen as the "parity version" of INDEPENDENT SET and q-COLORING. Other problems?

Gràcies!

