On the existence of polynomial kernels for structural parameterizations of hitting problems

Ignasi Sau

LIRMM, Université de Montpellier, CNRS

Based on joint work with Marin Bougeret and Bart M. P. Jansen [arXiv:1609.08095 arXiv:2004.12865 arXiv:2404.16695]

> UFC, Fortaleza November 8th, 2024

1 Introduction to structural parameterizations

- 2 Graph classes closed under minors
- 3 Graph classes closed under (induced) subgraphs
- 4 Some ideas of the techniques
 - Upper bounds
 - Lower bounds

1 Introduction to structural parameterizations

- 2 Graph classes closed under minors
- 3 Graph classes closed under (induced) subgraphs
- 4 Some ideas of the techniques
 - Upper bounds
 - Lower bounds

Idea Measure the complexity of an algorithm in terms of the input size and an additional parameter.

This theory started in the late 80's, by Downey and Fellows:

Today, it is a well-established and very active area.

Parameterized problems

A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.

A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.

- k-VERTEX COVER: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, containing at least an endpoint of every edge?
- k-CLIQUE: Does a graph G contain a set S ⊆ V(G), with |S| ≥ k, of pairwise adjacent vertices?
- VERTEX *k*-COLORING: Can the vertices of a graph be colored with $\leq k$ colors, so that any two adjacent vertices get different colors?

A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$, where Σ is a fixed, finite alphabet.

For an instance $(x, k) \in \Sigma^* \times \mathbb{N}$, k is called the parameter.

- k-VERTEX COVER: Does a graph G contain a set $S \subseteq V(G)$, with $|S| \leq k$, containing at least an endpoint of every edge?
- k-CLIQUE: Does a graph G contain a set S ⊆ V(G), with |S| ≥ k, of pairwise adjacent vertices?
- VERTEX *k*-COLORING: Can the vertices of a graph be colored with $\leq k$ colors, so that any two adjacent vertices get different colors?

These three problems are NP-hard, but are they equally hard?

• *k*-VERTEX COVER: Solvable in time $\mathcal{O}(2^k \cdot (m+n))$

• *k*-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot n^k)$

• *k*-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot \mathbf{n}^k) = f(k) \cdot \mathbf{n}^{g(k)}$.

The problem is FPT (fixed-parameter tractable)

• *k*-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.

・ロ>・(四)>・(三)>・(三)>・(三)>・(三)>・(三)>・(三)>
 6

The problem is **FPT** (fixed-parameter tractable)

• *k*-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot n^k) = f(k) \cdot n^{g(k)}$.

The problem is XP (slice-wise polynomial)

The problem is FPT (fixed-parameter tractable)

• *k*-CLIQUE: Solvable in time $\mathcal{O}(k^2 \cdot \mathbf{n}^k) = f(k) \cdot \mathbf{n}^{g(k)}$.

The problem is XP (slice-wise polynomial)

• VERTEX *k*-COLORING: NP-hard for fixed k = 3.

The problem is para-NP-hard

Idea polynomial-time preprocessing.

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x, k) of A polynomial time Instance (x', k') of A(x, k) is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of A. ($x' + k' \leq g(k)$ for some computable function $g : \mathbb{N} \to \mathbb{N}$.

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x, k) of A polynomial time Instance (x', k') of A(x, k) is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of A. ($x' \mid k' \leq g(k)$ for some computable function $g : \mathbb{N} \to \mathbb{N}$.

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Idea polynomial-time preprocessing.

A kernel for a parameterized problem A is an algorithm such that:

Instance (x, k) of Apolynomial timeInstance (x', k') of A(x, k) is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of A.(x', k') is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of A.(x', k') is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of A.(x', k') is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of A.(x', k') is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of A.(x', k') is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of A.(x', k') is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of A.(x', k') is a YES-instance

The function g is called the size of the kernel.

If g is a polynomial (linear), then we have a polynomial (linear) kernel.

Fact: A problem is $\mathsf{FPT} \Leftrightarrow \mathsf{it} \mathsf{admits} \mathsf{a} \mathsf{kernel}$

Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT \Leftrightarrow it admits a kernel

Do all FPT problems admit polynomial kernels?

Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT \Leftrightarrow it admits a kernel

Do all FPT problems admit polynomial kernels?

Theorem (Bodlaender, Downey, Fellows, Hermelin. 2009)

Deciding whether a graph has a PATH with $\geq k$ vertices is FPT but does not admit a polynomial kernel, unless NP \subseteq coNP/poly.

NO!

Do all FPT problems admit polynomial kernels?

Fact: A problem is FPT \Leftrightarrow it admits a kernel

Do all FPT problems admit polynomial kernels?

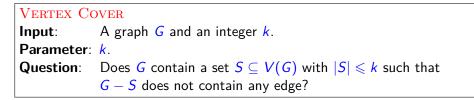
Theorem (Bodlaender, Downey, Fellows, Hermelin. 2009)

Deciding whether a graph has a PATH with $\geq k$ vertices is FPT but does not admit a polynomial kernel, unless NP \subseteq coNP/poly.

Major goal in parameterized complexity:

Which FPT problems admit polynomial kernels?

NO!



Well-known: VERTEX COVER admits a linear kernel parameterized by k (natural parameter).

Well-known: VERTEX COVER admits a linear kernel parameterized by k (natural parameter).

What about instances whose solution is large? For instance, a path?

Well-known: VERTEX COVER admits a linear kernel parameterized by k (natural parameter).

What about instances whose solution is large? For instance, a path?

Idea: consider parameters that can be smaller than the solution size.

Well-known: VERTEX COVER admits a linear kernel parameterized by k (natural parameter).

What about instances whose solution is large? For instance, a path?

Idea: consider parameters that can be smaller than the solution size.

The existence of a polynomial kernel for such a parameter would be a stronger result: better preprocessing guarantees.

Very convenient way to describe structural parameterizations: Vertex-deletion distance to some graph class ("distance to triviality").

Very convenient way to describe structural parameterizations: Vertex-deletion distance to some graph class ("distance to triviality").

For a fixed graph class \mathcal{C} : the vertex-deletion distance of a graph G to \mathcal{C} is the smallest size of a vertex set $X \subseteq V(G)$ such that $G - X \in \mathcal{C}$.

Very convenient way to describe structural parameterizations: Vertex-deletion distance to some graph class ("distance to triviality").

For a fixed graph class \mathcal{C} : the vertex-deletion distance of a graph G to \mathcal{C} is the smallest size of a vertex set $X \subseteq V(G)$ such that $G - X \in \mathcal{C}$.

The set X is called the C-modulator, or just modulator.

Very convenient way to describe structural parameterizations: Vertex-deletion distance to some graph class ("distance to triviality").

For a fixed graph class \mathcal{C} : the vertex-deletion distance of a graph G to \mathcal{C} is the smallest size of a vertex set $X \subseteq V(G)$ such that $G - X \in \mathcal{C}$.

The set X is called the C-modulator, or just modulator.

Examples:

• vertex cover number:

Very convenient way to describe structural parameterizations: Vertex-deletion distance to some graph class ("distance to triviality").

For a fixed graph class \mathcal{C} : the vertex-deletion distance of a graph G to \mathcal{C} is the smallest size of a vertex set $X \subseteq V(G)$ such that $G - X \in \mathcal{C}$.

The set X is called the C-modulator, or just modulator.

Examples:

• vertex cover number: C = independent sets.

Very convenient way to describe structural parameterizations: Vertex-deletion distance to some graph class ("distance to triviality").

For a fixed graph class \mathcal{C} : the vertex-deletion distance of a graph G to \mathcal{C} is the smallest size of a vertex set $X \subseteq V(G)$ such that $G - X \in \mathcal{C}$.

The set X is called the C-modulator, or just modulator.

Examples:

- vertex cover number: C = independent sets.
- feedback vertex set number:

Very convenient way to describe structural parameterizations: Vertex-deletion distance to some graph class ("distance to triviality").

For a fixed graph class \mathcal{C} : the vertex-deletion distance of a graph G to \mathcal{C} is the smallest size of a vertex set $X \subseteq V(G)$ such that $G - X \in \mathcal{C}$.

The set X is called the C-modulator, or just modulator.

Examples:

- vertex cover number: C = independent sets.
- feedback vertex set number: C = forests.

Very convenient way to describe structural parameterizations: Vertex-deletion distance to some graph class ("distance to triviality").

For a fixed graph class C: the vertex-deletion distance of a graph G to C is the smallest size of a vertex set $X \subseteq V(G)$ such that $G - X \in C$.

The set X is called the C-modulator, or just modulator.

Examples:

- vertex cover number: C = independent sets.
- feedback vertex set number: C = forests.

Very influential result:

Theorem (Jansen and Bodlaender, 2011)

VERTEX COVER admits a polynomial kernel parameterized by the feedback vertex set number of the input graph.

Note that, for every graph G, $fvs(G) \leq vc(G)$.

Introduction to structural parameterizations

2 Graph classes closed under minors

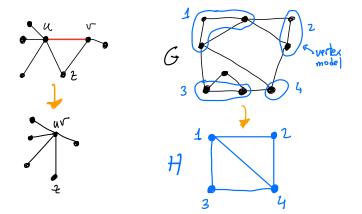
3 Graph classes closed under (induced) subgraphs

4 Some ideas of the techniques

- Upper bounds
- Lower bounds

Graph minors

A graph *H* is a minor of a graph *G*, denoted by $H \leq_m G$, if *H* can be obtained by a subgraph of *G* by contracting edges.



・ロト ・ 同ト ・ ヨト ・

Minor-closed graph classes

A graph class \mathcal{C} is minor-closed (or closed under minors) if

 $G \in \mathcal{C} \Rightarrow H \in \mathcal{C}$ for every $H \leq_m G$.

Minor-closed graph classes

A graph class C is minor-closed (or closed under minors) if

 $G \in \mathcal{C} \Rightarrow H \in \mathcal{C}$ for every $H \leq_m G$.

Examples of minor-closed graph classes:

- Independent sets.
- Forests.
- Series-parallel graphs.
- Planar graphs.
- Graphs embeddable in a fixed surface.
- Linklessly embeddable graphs.
- Knotlessly embeddable graphs.

Characterizing a graph class by excluded minors

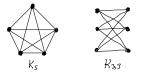
Let \mathcal{F} be a (possibly infinite) family of graphs. We define $exc(\mathcal{F})$ as the class of all graphs that do not contain any of the graphs in \mathcal{F} as a minor.

Characterizing a graph class by excluded minors

Let \mathcal{F} be a (possibly infinite) family of graphs. We define $exc(\mathcal{F})$ as the class of all graphs that do not contain any of the graphs in \mathcal{F} as a minor.

- If C = independent sets, then $C = \exp(K_2)$.
- If C = forests, then $C = \exp(K_3)$.
- If C = series-parallel graphs, then $C = \exp(K_4)$.
- If C = outerplanar graphs, then $C = \exp(K_4, K_{2,3})$.
- If C = planar graphs, then $C = \exp(K_5, K_{3,3})$.

[Kuratowski. 1930]



- If C = graphs embeddable in the projective plane, then $|\mathcal{F}_C| = 35$.
- If C = graphs embeddable in a fixed surface, then \mathcal{F}_C is finite.

[Archdeacon, Huneke. 1989 + Robertson, Seymour. 1990]

Conjecture (Wagner. 1970)

For every minor-closed graph class C, there exists a finite set of graphs \mathcal{F}_C such that $C = \exp(\mathcal{F}_C)$.

Theorem (Robertson, Seymour. 1983-2004)

For every minor-closed graph class C, there exists a finite set of graphs \mathcal{F}_C such that $C = \exp(\mathcal{F}_C)$.

Example of a 2-tree:

For $k \ge 1$, a *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

Example of a 2-tree:

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

[Figure by Julien Baste]

Example of a 2-tree:

For $k \ge 1$, a *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

Example of a 2-tree:

For $k \ge 1$, a *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

Example of a 2-tree:

For $k \ge 1$, a *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

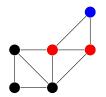
[Figure by Julien Baste]

Example of a 2-tree:

For $k \ge 1$, a *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

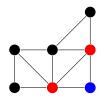
Example of a 2-tree:



For $k \ge 1$, a *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

Example of a 2-tree:

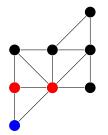


For $k \ge 1$, a *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

[Figure by Julien Baste]

(日) (圖) (불) (불) (불) (분) (이) (16) (16)

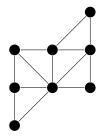
Example of a 2-tree:



[Figure by Julien Baste]

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

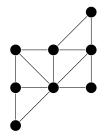
Example of a 2-tree:



[Figure by Julien Baste]

For $k \ge 1$, a *k*-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a *k*-clique.

Example of a 2-tree:

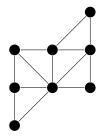


[Figure by Julien Baste]

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

A partial *k*-tree is a subgraph of a *k*-tree.

Example of a 2-tree:



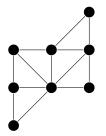
[Figure by Julien Baste]

For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

A partial *k*-tree is a subgraph of a *k*-tree.

Treewidth of a graph G, denoted tw(G): smallest integer k such that G is a partial k-tree.

Example of a 2-tree:



[Figure by Julien Baste]

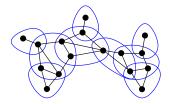
For $k \ge 1$, a k-tree is a graph that can be built starting from a (k + 1)-clique and then iteratively adding a vertex connected to a k-clique.

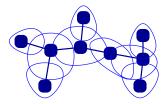
A partial *k*-tree is a subgraph of a *k*-tree.

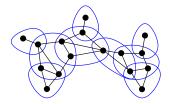
Treewidth of a graph G, denoted tw(G): smallest integer k such that G is a partial k-tree.

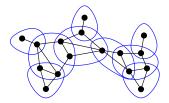
Invariant that measures the topological resemblance of a graph to a forest.

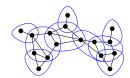
Construction suggests the notion of tree decomposition: small separators.

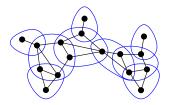


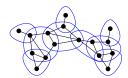


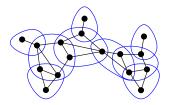












Theorem (Jansen and Bodlaender, 2011)

VERTEX COVER admits a polynomial kernel parameterized by the feedback vertex set number of the input graph.

Theorem (Jansen and Bodlaender, 2011)

Theorem (Jansen and Bodlaender, 2011)

VERTEX COVER/fvs		
Input:	A graph G, an integer ℓ , and a set $X \subseteq V(G)$ such that	
	G-X is a forest.	
Parameter:	X .	
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq \ell$ such that	
	G - S does not contain any edge?	

Theorem (Jansen and Bodlaender, 2011)

VERTEX COVER/fvs		
Input:	A graph G, an integer ℓ , and a set $X \subseteq V(G)$ such that	
	G-X is a forest.	
Parameter:	X .	
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq \ell$ such that	
	G-S does not contain any edge?	

VERTEX COVER/ C -modulator	
Input:	A graph G, an integer ℓ , and a set $X \subseteq V(G)$ such that
	$G-X\in\mathcal{C}.$
Parameter:	X .
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq \ell$ such that
	G - S does not contain any edge?

VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to a forest.

VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to the class \mathcal{C} of...

VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to a forest.

 $\rm VERTEX\ COVER$ admits a polynomial kernel parameterized by the vertex-deletion distance to the class ${\cal C}$ of...

• graphs of maximum degree 2.

[Majumdar, Raman, and Saurabh, 2015]

VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to a forest.

 $\rm VERTEX\ COVER$ admits a polynomial kernel parameterized by the vertex-deletion distance to the class ${\cal C}$ of...

- graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]
- pseudo-forests (each component ≤ 1 cycle). [Fomin and Strømme, 2016]

VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to a forest.

 $\rm VERTEX\ COVER$ admits a polynomial kernel parameterized by the vertex-deletion distance to the class ${\cal C}$ of...

- graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]
- pseudo-forests (each component ≤ 1 cycle). [Fomin and Strømme, 2016]
- *d*-pseudo-forests (each component has $fvs \leq d$). [Hols and Kratsch, 2016]

VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to a forest.

 $\rm VERTEX\ COVER$ admits a polynomial kernel parameterized by the vertex-deletion distance to the class ${\cal C}$ of...

- graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]
- pseudo-forests (each component ≤ 1 cycle). [Fomin and Strømme, 2016]
- *d*-pseudo-forests (each component has $fvs \leq d$). [Hols and Kratsch, 2016]
- graphs of bounded tree-depth. [Bo

[Bougeret and S., 2017]

・ロト ・回ト ・ヨト ・ヨト ・ヨ

VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to a forest.

 $\rm VERTEX\ COVER$ admits a polynomial kernel parameterized by the vertex-deletion distance to the class ${\cal C}$ of...

- graphs of maximum degree 2. [Majumdar, Raman, and Saurabh, 2015]
- pseudo-forests (each component ≤ 1 cycle). [Fomin and Strømme, 2016]
- *d*-pseudo-forests (each component has $fvs \leq d$). [Hols and Kratsch, 2016]
- graphs of bounded tree-depth. [Bougeret and S., 2017]

All these graph classes are minor-closed.

・ロト ・回ト ・ヨト ・ヨト ・ヨ

For a graph G, define td(G) as

```
\begin{cases} 0 & \text{if } G \text{ is the empty graph,} \\ \max_{C_i} \operatorname{\mathsf{td}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \operatorname{\mathsf{td}}(G - v) & \text{otherwise.} \end{cases}
```

For a graph G, define td(G) as

```
\begin{cases} 0 & \text{if } G \text{ is the empty graph,} \\ \max_{C_i} \operatorname{td}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \operatorname{td}(G - v) & \text{otherwise.} \end{cases}
```

Idea: equivalent to the existence of long paths.

For a graph G, define td(G) as

```
\begin{cases} 0 & \text{if } G \text{ is the empty graph,} \\ \max_{C_i} \operatorname{td}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \operatorname{td}(G - v) & \text{otherwise.} \end{cases}
```

Idea: equivalent to the existence of long paths.

Treewidth: measures how far it is from being a tree. Tree-depth: measures how far a graph is from being a star.

For a graph G, define td(G) as

 $\begin{cases} 0 & \text{if } G \text{ is the empty graph,} \\ \max_{C_i} \operatorname{td}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \operatorname{td}(G - v) & \text{otherwise.} \end{cases}$

Idea: equivalent to the existence of long paths.

Treewidth: measures how far it is from being a tree. Tree-depth: measures how far a graph is from being a star.

For any graph G it holds that

 $\mathsf{tw}(G) \leq \mathsf{pw}(G) \leq \mathsf{td}(G) - 1.$

Only good news?

 $\rm VERTEX\ COVER$ admits a polynomial kernel parameterized by the vertex-deletion distance to a...

- forest.
- graphs of maximum degree 2.
- pseudo-forest (each component ≤ 1 cycle). [Fomin and Strømme, 2016]
- *d*-pseudo-forest (each component has $fvs \leq d$).
- graphs of bounded tree-depth.

[Jansen and Bodlaender, 2011]

[Majumdar, Raman, and Saurabh, 2015]

[Hols and Kratsch, 2016]

[Bougeret and S., 2017]

Only good news? No!

 $\rm VERTEX\ COVER$ admits a polynomial kernel parameterized by the vertex-deletion distance to a...

• forest.

[Jansen and Bodlaender, 2011]

- graphs of maximum degree 2.
- [Majumdar, Raman, and Saurabh, 2015]
- pseudo-forest (each component ≤ 1 cycle). [Fomin and Strømme, 2016]
- *d*-pseudo-forest (each component has $fvs \leq d$). [Hols and Kratsch, 2016]
- graphs of bounded tree-depth.

[Bougeret and S., 2017]

 $\label{eq:VERTEX} \begin{array}{l} \text{VERTEX COVER does not admit a polynomial kernel parameterized by the} \\ \text{vertex-deletion distance to a graph of treewidth 2, unless NP \subseteq coNP/poly. $$ [Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh, 2014] $$ \end{tabular}$

Only good news? No! Where is the limit?

 $\rm VERTEX\ COVER$ admits a polynomial kernel parameterized by the vertex-deletion distance to a...

• forest.

[Jansen and Bodlaender, 2011]

[Bougeret and S., 2017]

[Majumdar, Raman, and Saurabh, 2015]

- graphs of maximum degree 2.
- pseudo-forest (each component ≤ 1 cycle). [Fomin and Strømme, 2016]
- *d*-pseudo-forest (each component has $fvs \le d$). [Hols and Kratsch, 2016]
- graphs of bounded tree-depth.

VERTEX COVER does not admit a polynomial kernel parameterized by the vertex-deletion distance to a graph of treewidth 2, unless NP \subseteq coNP/poly. [Cygan, Lokshtanov, Pilipczuk, Pilipczuk, and Saurabh, 2014]

★ Which is the most general (minor-closed) graph class C such that VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to C?

Let C be a minor-closed graph class, and suppose that NP \subseteq coNP/poly. VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to C if and only if C has bounded bridge-depth.

It generalizes all results mentioned so far for VERTEX $\operatorname{COVER}.$

Let C be a minor-closed graph class, and suppose that NP \subseteq coNP/poly. VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to C if and only if C has bounded bridge-depth.

It generalizes all results mentioned so far for $\operatorname{Vertex}\,\operatorname{Cover}.$

A tree of bridges in a graph G is a subgraph T that is a tree and in which each edge is a bridge in G.

Let C be a minor-closed graph class, and suppose that NP \subseteq coNP/poly. VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to C if and only if C has bounded bridge-depth.

It generalizes all results mentioned so far for $\operatorname{Vertex}\,\operatorname{Cover}.$

A tree of bridges in a graph G is a subgraph T that is a tree and in which each edge is a bridge in G.

```
For a graph G, define bd(G) as
```

 $\begin{cases} 0 & \text{if } G \text{ is the empty graph,} \\ \max_{C_i} \operatorname{bd}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_T \operatorname{bd}(G - T) & \text{where } T \subseteq G \text{ is a tree of bridges, otherwise.} \end{cases}$

Tree-depth vs. bridge-depth

For a graph G, define $|\mathsf{td}(G)|$ as

 $\begin{cases} 0 & \text{if } G \text{ is the empty graph,} \\ \max_{C_i} \operatorname{td}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \operatorname{td}(G - v) & \text{otherwise.} \end{cases}$

For a graph G, define bd(G) as

 $\begin{cases} 0 & \text{if } G \text{ is the empty graph,} \\ \max_{C_i} \mathsf{bd}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_T \mathsf{bd}(G - T) & \text{where } T \subseteq G \text{ is a tree of bridges, otherwise.} \end{cases}$

[Tree of bridges in G: subgraph T that is a tree and each edge is a bridge.]

Tree-depth vs. bridge-depth

For a graph G, define td(G) as

 $\begin{cases} 0 & \text{if } G \text{ is the empty graph,} \\ \max_{C_i} \operatorname{td}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \operatorname{td}(G - v) & \text{otherwise.} \end{cases}$

For a graph G, define |bd(G)| as

 $\begin{cases} 0 & \text{if } G \text{ is the empty graph,} \\ \max_{C_i} \operatorname{bd}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_T \operatorname{bd}(G - T) & \text{where } T \subseteq G \text{ is a tree of bridges, otherwise.} \end{cases}$

[Tree of bridges in G: subgraph T that is a tree and each edge is a bridge.]

For any graph G, it holds that

$$\mathsf{tw}(G) \leq \mathsf{bd}(G) \leq \min\{\mathsf{fvs}(G) - 1, \mathsf{td}(G)\} \in \mathbb{R} \times \mathbb{R} \quad \text{for all } \mathcal{C}(G) \in \mathbb{R}$$

Let C be a minor-closed graph class, and suppose that NP \subseteq coNP/poly. VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to C if and only if C has bounded bridge-depth.

It generalizes all results mentioned so far for $\operatorname{Vertex}\,\operatorname{Cover}.$

For any graph G, it holds that

$$\mathsf{tw}(G) \leq \mathsf{bd}(G) \leq \min\{\mathsf{fvs}(G) - 1, \mathsf{td}(G)\}$$

It is easy too see that bridge-depth is minor-closed.

Let C be a minor-closed graph class, and suppose that NP \subseteq coNP/poly. VERTEX COVER admits a polynomial kernel parameterized by the vertex-deletion distance to C if and only if C has bounded bridge-depth.

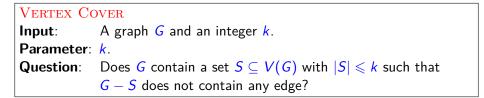
It generalizes all results mentioned so far for $\operatorname{Vertex}\,\operatorname{Cover}.$

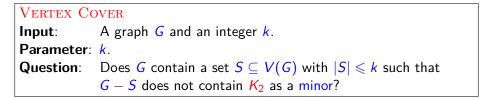
For any graph G, it holds that

 $\mathsf{tw}(G) \leq \mathsf{bd}(G) \leq \min\{\mathsf{fvs}(G) - 1, \mathsf{td}(G)\}$

It is easy too see that bridge-depth is minor-closed.

Bridge-depth ultimate common generalization of feedback vertex set number and tree-depth (which are incomparable) in the context of polynomial kernels for VERTEX COVER.





Vertex Cover	
Input:	A graph G and an integer k .
Parameter: k.	
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that
	$G-S$ does not contain K_2 as a minor?

Let \mathcal{F} be a fixed finite family of graphs.

F-M-DELETION		
Input:	A graph G and an integer k .	
Parameter: k.		
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that	
	$G-S$ does not contain any of the graphs in ${\mathcal F}$ as a minor?	

What is known about kernels for \mathcal{F} -M-DELETION

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:k.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain any of the graphs in \mathcal{F} as a minor?

What is known about kernels for $\mathcal{F}\text{-}\mathrm{M}\text{-}\mathrm{DELETION}$

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:k.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain any of the graphs in \mathcal{F} as a minor?

A randomized polynomial kernel exists when \mathcal{F} contains a planar graph. [Fomin, Lokshtanov, Misra, and Saurabh, 2012]

What is known about kernels for $\mathcal{F}\text{-}\mathrm{M}\text{-}\mathrm{DELETION}$

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:k.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain any of the graphs in \mathcal{F} as a minor?

A randomized polynomial kernel exists when \mathcal{F} contains a planar graph. [Fomin, Lokshtanov, Misra, and Saurabh, 2012]

For \mathcal{F} containing only non-planar graphs, the existence of polynomial kernels is wide open (even for the natural parameter!).

What is known about kernels for $\mathcal{F}\text{-}\mathrm{M}\text{-}\mathrm{Deletion}$

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:k.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain any of the graphs in \mathcal{F} as a minor?

A randomized polynomial kernel exists when \mathcal{F} contains a planar graph. [Fomin, Lokshtanov, Misra, and Saurabh, 2012]

For \mathcal{F} containing only non-planar graphs, the existence of polynomial kernels is wide open (even for the natural parameter!).

For $\mathcal{F} = \{K_5, K_{3,3}\}$ (the PLANARIZATION problem), an approximate polynomial kernel is known. [Jansen and Wlodarczyk, 2022]

What is known about kernels for $\mathcal{F}\text{-}\mathrm{M}\text{-}\mathrm{DELETION}$

\mathcal{F} -M-DELETIONInput:A graph G and an integer k.Parameter:k.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain any of the graphs in \mathcal{F} as a minor?

A randomized polynomial kernel exists when \mathcal{F} contains a planar graph. [Fomin, Lokshtanov, Misra, and Saurabh, 2012]

For \mathcal{F} containing only non-planar graphs, the existence of polynomial kernels is wide open (even for the natural parameter!).

For $\mathcal{F} = \{K_5, K_{3,3}\}$ (the PLANARIZATION problem), an approximate polynomial kernel is known. [Jansen and Wlodarczyk, 2022]

Thus, polynomial kernels for structural parameterizations of \mathcal{F} -M-DELETION are currently out of reach.

Some good news: FEEDBACK VERTEX SET

FEEDBACK	VERTEX SET/ C -modulator
Input:	A graph G, an integer ℓ , and a set $X \subseteq V(G)$ such that
	$G-X\in\mathcal{C}$.
Parameter:	X .
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq \ell$ such that
	G-S is a forest?

Some good news: FEEDBACK VERTEX SET

FEEDBACK	VERTEX SET/ C -modulator
Input:	A graph G, an integer ℓ , and a set $X \subseteq V(G)$ such that
	$G-X\in\mathcal{C}.$
Parameter:	X .
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq \ell$ such that
	G-S is a forest?

Theorem (Dekker and Jansen, 2020)

Let C be a minor-closed graph class, and suppose that NP \subseteq coNP/poly. FEEDBACK VERTEX SET admits a polynomial kernel parameterized by the vertex-deletion distance to C if and only if C has bounded elimination distance to a forest.

Theorem (Dekker and Jansen, 2020)

Let C be a minor-closed graph class, and suppose that NP \subseteq coNP/poly. FEEDBACK VERTEX SET admits a polynomial kernel parameterized by the vertex-deletion distance to C if and only if C has bounded elimination distance to a forest.

```
For a graph G, define \operatorname{ed}_{\operatorname{for}}(G) as

\begin{cases}
0 & \text{if } G \text{ is a forest,} \\
\max_{C_i} \operatorname{ed}_{\operatorname{for}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\
1 + \min_{v \in V(G)} \operatorname{ed}_{\operatorname{for}}(G - v) & \text{otherwise.} 
\end{cases}
```

Theorem (Dekker and Jansen, 2020)

Let C be a minor-closed graph class, and suppose that NP \subseteq coNP/poly. FEEDBACK VERTEX SET admits a polynomial kernel parameterized by the vertex-deletion distance to C if and only if C has bounded elimination distance to a forest.

```
For a graph G, define \operatorname{ed}_{\operatorname{for}}(G) as

\begin{cases}
0 & \text{if } G \text{ is a forest,} \\
\max_{C_i} \operatorname{ed}_{\operatorname{for}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\
1 + \min_{v \in V(G)} \operatorname{ed}_{\operatorname{for}}(G - v) & \text{otherwise.} 
\end{cases}
```

By definition, for any graph G is holds that

 $\mathsf{tw}(G) - 1 \le \mathsf{bd}(G) - 1 \le \mathsf{ed}_{\mathsf{for}}(G) \le \min\{\mathsf{fvs}(G), \mathsf{td}(G)\}$

For a graph G, define $ed_{for}(G)$ as

 $\begin{cases} 0 & \text{if } G \text{ is a forest,} \\ \max_{C_i} \operatorname{ed}_{\operatorname{for}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \operatorname{ed}_{\operatorname{for}}(G - v) & \text{otherwise.} \end{cases}$

For a graph G, define $ed_{for}(G)$ as

 $\begin{cases} 0 & \text{if } G \text{ is a forest,} \\ \max_{C_i} \operatorname{ed}_{\operatorname{for}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \operatorname{ed}_{\operatorname{for}}(G - v) & \text{otherwise.} \end{cases}$

For a fixed graph class \mathcal{L} and a graph G, define $ed_{\mathcal{L}}(G)$ as

 $\begin{cases} 0 & \text{if } G \in \mathcal{L}, \\ \max_{C_i} \operatorname{ed}_{\mathcal{L}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \geq 2, \\ 1 + \min_{v \in V(G)} \operatorname{ed}_{\mathcal{L}}(G - v) & \text{otherwise.} \end{cases}$

For a graph G, define $ed_{for}(G)$ as

 $\begin{cases} 0 & \text{if } G \text{ is a forest,} \\ \max_{C_i} \operatorname{ed}_{\operatorname{for}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \operatorname{ed}_{\operatorname{for}}(G - v) & \text{otherwise.} \end{cases}$

For a fixed graph class \mathcal{L} and a graph G, define $ed_{\mathcal{L}}(G)$ as

 $\begin{cases} 0 & \text{if } G \in \mathcal{L}, \\ \max_{C_i} \text{ed}_{\mathcal{L}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \text{ed}_{\mathcal{L}}(G - v) & \text{otherwise.} \end{cases}$

Conjecture (Bougeret, Brandwein, and S.)

Let C be a minor-closed graph class, let \mathcal{F} be a set of 2-connected graphs containing a planar graph, and suppose that NP \subseteq coNP/poly.

For a graph G, define $ed_{for}(G)$ as

 $\begin{cases} 0 & \text{if } G \text{ is a forest,} \\ \max_{C_i} \operatorname{ed}_{\operatorname{for}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \operatorname{ed}_{\operatorname{for}}(G - v) & \text{otherwise.} \end{cases}$

For a fixed graph class \mathcal{L} and a graph G, define $ed_{\mathcal{L}}(G)$ as

 $\begin{cases} 0 & \text{if } G \in \mathcal{L}, \\ \max_{C_i} \text{ed}_{\mathcal{L}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \text{ed}_{\mathcal{L}}(G - v) & \text{otherwise.} \end{cases}$

Conjecture (Bougeret, Brandwein, and S.)

Let C be a minor-closed graph class, let \mathcal{F} be a set of 2-connected graphs containing a planar graph, and suppose that NP \subseteq coNP/poly. \mathcal{F} -M-DELETION admits a poly kernel parameterized by the vertex-deletion distance to C if and only if C has bounded exc(\mathcal{F})-elimination distance. Introduction to structural parameterizations

2 Graph classes closed under minors

3 Graph classes closed under (induced) subgraphs

4 Some ideas of the techniques

- Upper bounds
- Lower bounds

A graph class C is hereditary if it is closed under induced subgraphs. A graph class C is monotone if it is closed under subgraphs.

A graph class C is hereditary if it is closed under induced subgraphs. A graph class C is monotone if it is closed under subgraphs.

What is known about the existence of polynomial kernels for VERTEX COVER parameterized by the vertex-deletion distance to a hereditary/monotone graph class C?

A graph class C is hereditary if it is closed under induced subgraphs. A graph class C is monotone if it is closed under subgraphs.

What is known about the existence of polynomial kernels for VERTEX COVER parameterized by the vertex-deletion distance to a hereditary/monotone graph class C?

Randomized poly kernel for C = bipartite graphs, König graphs. [Kratsch and Wahlström, 2012]

[Kratsch, 2018]

A graph class C is hereditary if it is closed under induced subgraphs. A graph class C is monotone if it is closed under subgraphs.

What is known about the existence of polynomial kernels for VERTEX COVER parameterized by the vertex-deletion distance to a hereditary/monotone graph class C?

Randomized poly kernel for C = bipartite graphs, König graphs. [Kratsch and Wahlström, 2012] [Kratsch, 2018]

Also, parameterizations based on the LP relaxation of VERTEX COVER. [Kratsch, 2018] [Hols, Kratsch, and Pieterse, 2020]

A graph class C is hereditary if it is closed under induced subgraphs. A graph class C is monotone if it is closed under subgraphs.

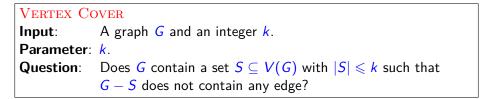
What is known about the existence of polynomial kernels for VERTEX COVER parameterized by the vertex-deletion distance to a hereditary/monotone graph class C?

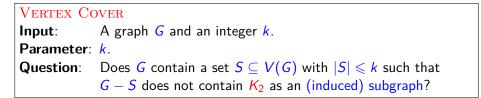
Randomized poly kernel for C = bipartite graphs, König graphs. [Kratsch and Wahlström, 2012]

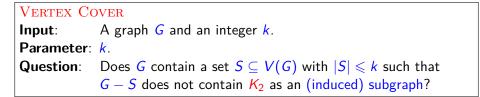
[Kratsch, 2018]

Also, parameterizations based on the LP relaxation of VERTEX COVER. [Kratsch, 2018] [Hols, Kratsch, and Pieterse, 2020]

Finding the right characterization for VERTEX COVER for hereditary/monotone graph class C seems currently out of reach.







H-SUBGRAPH HITTINGInput:A graph G and an integer k.Parameter:k.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain H as a subgraph?

Vertex Cover	
Input:	A graph G and an integer k .
Parameter: k.	
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that
	$G - S$ does not contain K_2 as an (induced) subgraph?

H-INDUCEDSUBGRAPH HITTINGInput:A graph *G* and an integer *k*.Parameter:k.Question:Does *G* contain a set $S \subseteq V(G)$ with $|S| \leq k$ such that
G - S does not contain *H* as an induced subgraph?

H-(INDUCED) SUBGRAPH HITTING	
Input:	A graph G and an integer k .
Parameter: k.	
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that
	G - S does not contain H as an (induced) subgraph?

For every fixed *H*, *H*-(INDUCED) SUBGRAPH HITTING admits a polynomial kernel parameterized by the solution size. [Abu-Khzam, 2010]

H-(INDUCED) SUBGRAPH HITTING	
Input:	A graph G and an integer k .
Parameter: k.	
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that
	G - S does not contain H as an (induced) subgraph?

For every fixed *H*, *H*-(INDUCED) SUBGRAPH HITTING admits a polynomial kernel parameterized by the solution size. [Abu-Khzam, 2010]

★ Fix a graph *H*. Which is the most general hereditary/monotone graph class C such that *H*-(INDUCED) SUBGRAPH HITTING admits a polynomial kernel parameterized by the vertex-deletion distance to C?

H-(INDUCED) SUBGRAPH HITTING	
Input:	A graph G and an integer k .
Parameter: k.	
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq k$ such that
	G - S does not contain H as an (induced) subgraph?

For every fixed *H*, *H*-(INDUCED) SUBGRAPH HITTING admits a polynomial kernel parameterized by the solution size. [Abu-Khzam, 2010]

★ Fix a graph *H*. Which is the most general hereditary/monotone graph class C such that *H*-(INDUCED) SUBGRAPH HITTING admits a polynomial kernel parameterized by the vertex-deletion distance to C?

This seems **really** hard!

★ Fix a graph *H*. Which is the most general hereditary/monotone graph class C such that *H*-(INDUCED) SUBGRAPH HITTING admits a polynomial kernel parameterized by the vertex-deletion distance to C?

Can we characterize C by some measure being bounded in C?

★ Fix a graph *H*. Which is the most general hereditary/monotone graph class C such that *H*-(INDUCED) SUBGRAPH HITTING admits a polynomial kernel parameterized by the vertex-deletion distance to C?

Can we characterize C by some measure being bounded in C? Natural candidate: tree-depth. ★ Fix a graph *H*. Which is the most general hereditary/monotone graph class C such that *H*-(INDUCED) SUBGRAPH HITTING admits a polynomial kernel parameterized by the vertex-deletion distance to C?

Can we characterize C by some measure being bounded in C? Natural candidate: tree-depth.

Theorem (Bougeret, Jansen, and S., 2024)

Let H be a graph on h vertices that is not a clique and that has no stable cutset. H-SUBGRAPH HITTING and H-INDUCED SUBGRAPH HITTING do not admit a polynomial kernel parameterized by the size of a given vertex set X of the input graph G such that td(G - X) = O(h), unless NP \subseteq coNP/poly.

To get positive results, we need to focus on the case where H is a clique.

To get positive results, we need to focus on the case where H is a clique.

Let $\mathcal{F}_{\overline{H}}$ (resp. $\mathcal{F}_{\overline{H}}^{ind}$) be the class of graphs that exclude H as a subgraph (resp. induced subgraph).

To get positive results, we need to focus on the case where H is a clique.

Let $\mathcal{F}_{\overline{H}}$ (resp. $\mathcal{F}_{\overline{H}}^{ind}$) be the class of graphs that exclude H as a subgraph (resp. induced subgraph).

Recall $\mathcal{F}_{\overline{H}}$ -elimination distance: in the last round, graphs in $\mathcal{F}_{\overline{H}}$ "for free".

To get positive results, we need to focus on the case where H is a clique.

Let $\mathcal{F}_{\overline{H}}$ (resp. $\mathcal{F}_{\overline{H}}^{ind}$) be the class of graphs that exclude H as a subgraph (resp. induced subgraph).

Recall $\mathcal{F}_{\overline{H}}$ -elimination distance: in the last round, graphs in $\mathcal{F}_{\overline{H}}$ "for free".

Let *H* be a fixed graph. For a graph *G*, define $\operatorname{ved}_{\mathcal{F}_{\overline{\mu}}}^+(G)$ as

$$\begin{cases} 0 & \text{if } V \\ \mathsf{ved}^+_{\mathcal{F}_{\vec{H}}}(G-v) & \text{if } v \\ \max_{C_i} \mathsf{ved}^+_{\mathcal{F}_{\vec{H}}}(C_i) & \text{if } G \\ 1 + \min_{v \in V(G)} \mathsf{ved}^+_{\mathcal{F}_{\vec{H}}}(G-v) & \text{othe} \end{cases}$$

if $V(G) = \emptyset$, if v is a vertex that is not in any copy of H, if G has conn. comp. $C_1, \ldots, C_c, c \ge 2$, otherwise.

To get positive results, we need to focus on the case where H is a clique.

Let $\mathcal{F}_{\overline{H}}$ (resp. $\mathcal{F}_{\overline{H}}^{ind}$) be the class of graphs that exclude H as a subgraph (resp. induced subgraph).

Recall $\mathcal{F}_{\overline{H}}$ -elimination distance: in the last round, graphs in $\mathcal{F}_{\overline{H}}$ "for free".

Let *H* be a fixed graph. For a graph *G*, define $\operatorname{ved}_{\mathcal{F}_{\overline{\mu}}}^+(G)$ as

$$\begin{cases} 0 & \text{if } V(G) = \emptyset, \\ \mathsf{ved}^+_{\mathcal{F}_{\bar{H}}}(G-v) & \text{if } v \text{ is a vertex} \\ \mathsf{max}_{C_i} \mathsf{ved}^+_{\mathcal{F}_{\bar{H}}}(C_i) & \text{if } G \text{ has conn.} \\ 1 + \min_{v \in V(G)} \mathsf{ved}^+_{\mathcal{F}_{\bar{H}}}(G-v) & \text{otherwise.} \end{cases}$$

if $v(G) = \emptyset$, if v is a vertex that is not in any copy of H, if G has conn. comp. $C_1, \ldots, C_c, c \ge 2$, otherwise.

 $\operatorname{ved}_{\mathcal{F}_{\underline{H}}}^{+}$: the same, but for induced copies of *H*.

We obtain a new kind of dichotomy: in terms of H

Let *H* be a fixed graph. For a graph *G*, define $\operatorname{ved}_{\mathcal{F}_{\overline{\mu}}}^+(G)$ as

$$\begin{pmatrix} 0 & \text{if } V \\ \mathsf{ved}^+_{\mathcal{F}_{\vec{H}}}(G-v) & \text{if } v \\ \max_{C_i} \mathsf{ved}^+_{\mathcal{F}_{\vec{H}}}(C_i) & \text{if } C \\ 1+\min_{v \in V(G)} \mathsf{ved}^+_{\mathcal{F}_{\vec{H}}}(G-v) & \text{oth} \end{pmatrix}$$

f
$$V(G) = \emptyset$$
,
f v is a vertex that is not in any copy of H ,
f G has conn. comp. $C_1, \ldots, C_c, c \ge 2$,
otherwise

・ロト・日ト・ヨト・ヨト ヨークへで
35

We obtain a new kind of dichotomy: in terms of H

Let *H* be a fixed graph. For a graph *G*, define $\operatorname{ved}_{\mathcal{F}_{\overline{\mu}}}^+(G)$ as

$$\begin{cases} 0 & \text{if } V(G) = \emptyset, \\ \text{ved}_{\mathcal{F}_{\vec{H}}}^+(G-v) & \text{if } v \text{ is a vertex that is not in any copy of } H, \\ \max_{C_i} \text{ved}_{\mathcal{F}_{\vec{H}}}^+(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \text{ved}_{\mathcal{F}_{\vec{H}}}^+(G-v) & \text{otherwise.} \end{cases}$$

Theorem (Bougeret, Jansen, and S., 2024)

Let *H* be a 2-connected graph, let $\lambda \ge 1$ be an integer, and assume that NP \subseteq coNP/poly. *H*-SUBGRAPH HITTING (resp. *H*-INDUCED SUBGRAPH HITTING) admits a polynomial kernel parameterized by the size of a given vertex set *X* of the input graph *G* such that $\operatorname{ved}_{\mathcal{F}_{\tilde{H}}}^+(G-X) \le \lambda$ (resp. $\operatorname{ved}_{\mathcal{F}_{\tilde{H}}}^{\operatorname{ind}}(G-X) \le \lambda$) if and only if

We obtain a new kind of dichotomy: in terms of H

Let *H* be a fixed graph. For a graph *G*, define $\operatorname{ved}_{\mathcal{F}_{\overline{\mu}}}^+(G)$ as

$$\begin{cases} 0 & \text{if } V(G) = \emptyset, \\ \text{ved}_{\mathcal{F}_{\overline{H}}}^+(G-v) & \text{if } v \text{ is a vertex that is not in any copy of } H, \\ \max_{C_i} \text{ved}_{\mathcal{F}_{\overline{H}}}^+(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \text{ved}_{\mathcal{F}_{\overline{H}}}^+(G-v) & \text{otherwise.} \end{cases}$$

Theorem (Bougeret, Jansen, and S., 2024)

Let H be a 2-connected graph, let $\lambda \geq 1$ be an integer, and assume that NP \subseteq coNP/poly. H-SUBGRAPH HITTING (resp. H-INDUCED SUBGRAPH HITTING) admits a polynomial kernel parameterized by the size of a given vertex set X of the input graph G such that ved⁺_{F_H}(G-X) $\leq \lambda$ (resp. ved⁺_{F_H}(G-X) $\leq \lambda$) if and only if H is a clique.

<ロト < 回 ト < 臣 ト < 臣 ト 王 の < で 36

Let *H* be a fixed graph. For a graph *G*, define $\operatorname{ved}_{\mathcal{F}_{\overline{\mu}}}^+(G)$ as

if
$$V(G) = \emptyset$$
,
if v is a vertex that is not in any copy of H ,
if G has conn. comp. $C_1, \ldots, C_c, c \ge 2$,
otherwise.

Let *H* be a fixed graph. For a graph *G*, define $\operatorname{ved}_{\mathcal{F}_{\overline{\mu}}}^+(G)$ as

$$\begin{cases} 0 & \text{if } V(G) = \emptyset, \\ \mathsf{ved}^+_{\mathcal{F}_{\tilde{H}}}(G-v) & \text{if } v \text{ is a vertex that is not in any copy of } H \\ \mathsf{max}_{C_i} \mathsf{ved}^+_{\mathcal{F}_{\tilde{H}}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \mathsf{ved}^+_{\mathcal{F}_{\tilde{H}}}(G-v) & \text{otherwise.} \end{cases}$$

Inspired by bridge-depth: can we remove more than just one vertex?

Let *H* be a fixed graph. For a graph *G*, define $\operatorname{ved}_{\mathcal{F}_{\overline{\mu}}}^+(G)$ as

$$\begin{cases} 0 & \text{if } V(G) = \emptyset, \\ \mathsf{ved}^+_{\mathcal{F}_{\tilde{H}}}(G-\nu) & \text{if } \nu \text{ is a vertex that is not in any copy of } H \\ \mathsf{max}_{C_i} \mathsf{ved}^+_{\mathcal{F}_{\tilde{H}}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \mathsf{ved}^+_{\mathcal{F}_{\tilde{H}}}(G-\nu) & \text{otherwise.} \end{cases}$$

Inspired by bridge-depth: can we remove more than just one vertex?

What we can remove: vertex sets $T \subseteq V(G)$ that induce connected subgraphs that do not contain H as a subgraph (or induced subgraph) and that are "weakly attached" to the rest of the graph, meaning that each connected component of G - T has at most one neighbor in T.

Let *H* be a fixed graph. For a graph *G*, define $\operatorname{ved}_{\mathcal{F}_{\overline{\mu}}}^+(G)$ as

$$\begin{cases} 0 & \text{if } V(G) = \emptyset, \\ \mathsf{ved}^+_{\mathcal{F}_{\vec{H}}}(G-v) & \text{if } v \text{ is a vertex that is not in any copy of } H \\ \mathsf{max}_{C_i} \mathsf{ved}^+_{\mathcal{F}_{\vec{H}}}(C_i) & \text{if } G \text{ has conn. comp. } C_1, \dots, C_c, \ c \ge 2, \\ 1 + \min_{v \in V(G)} \mathsf{ved}^+_{\mathcal{F}_{\vec{H}}}(G-v) & \text{otherwise.} \end{cases}$$

Inspired by bridge-depth: can we remove more than just one vertex?

What we can remove: vertex sets $T \subseteq V(G)$ that induce connected subgraphs that do not contain H as a subgraph (or induced subgraph) and that are "weakly attached" to the rest of the graph, meaning that each connected component of G - T has at most one neighbor in T.

We call the resulting parameter $\operatorname{bed}_{\mathcal{F}_{\overline{H}}}^+$ (or $\operatorname{bed}_{\mathcal{F}_{\overline{H}}}^+$), where 'b' stands for the removal of *blocks*. For any two graphs G and H, the following holds:

 $\mathsf{bed}^+_{\mathcal{F}_{\tilde{H}}}(G) \leq \mathsf{ved}^+_{\mathcal{F}_{\tilde{H}}}(G) \leq \mathsf{ed}_{\mathcal{F}_{\tilde{H}}}(G) \leq \mathsf{td}(G).$

For any two graphs G and H, the following holds:

$$\mathsf{bed}^+_{\mathcal{F}_{\tilde{H}}}(G) \leq \mathsf{ved}^+_{\mathcal{F}_{\tilde{H}}}(G) \leq \mathsf{ed}_{\mathcal{F}_{\tilde{H}}}(G) \leq \mathsf{td}(G).$$

Theorem (Bougeret, Jansen, and **S**., 2024)

Let $t \ge 3$ and $\lambda \ge 1$ be fixed integers. The K_t -SUBGRAPH HITTING problem admits a polynomial kernel parameterized by the size of a given vertex set X of the input graph G such that $bed_{\mathcal{F}_{\mathcal{K}}}^+$ $(G - X) \le \lambda$. Introduction to structural parameterizations

2 Graph classes closed under minors

3 Graph classes closed under (induced) subgraphs

- Upper bounds
- Lower bounds

Introduction to structural parameterizations

2 Graph classes closed under minors

3 Graph classes closed under (induced) subgraphs

- Some ideas of the techniques
 Upper bounds
 - Lower bounds

VERTEX COVER/C-modulator	
Input:	A graph G, an integer ℓ , and a set $X \subseteq V(G)$ such that
	$G-X\in\mathcal{C}.$
Parameter:	X .
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \leq \ell$ such that
	G - S does not contain any edge?

INDEPENDENTSET/C-modulatorInput:A graph G, an integer ℓ , and a set $X \subseteq V(G)$ such that $G - X \in C$.Parameter:|X|.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \ge \ell$ such thatG[S] does not contain any edge?

INDEPENDENT SET/ C -modulator	
Input:	A graph G, an integer ℓ , and a set $X \subseteq V(G)$ such that
	$G-X\in\mathcal{C}.$
Parameter:	X .
Question:	Does G contain a set $S \subseteq V(G)$ with $ S \ge \ell$ such that
	G[S] does not contain any edge?

 $\alpha(G)$: maximum size of a set of pairwise nonadjacent vertices in G.

INDEPENDENTSET/C-modulatorInput:A graph G, an integer ℓ , and a set $X \subseteq V(G)$ such that $G - X \in C$.Parameter:|X|.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \ge \ell$ such thatG[S] does not contain any edge?

 $\alpha(G)$: maximum size of a set of pairwise nonadjacent vertices in G. Blocking set in a graph G: $Y \subseteq V(G)$ such that $\alpha(G - Y) < \alpha(G)$.

INDEPENDENT SET/C-modulatorInput:A graph G, an integer ℓ , and a set $X \subseteq V(G)$ such that $G - X \in C$.Parameter:|X|.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \ge \ell$ such thatG[S] does not contain any edge?

 $\alpha(G)$: maximum size of a set of pairwise nonadjacent vertices in G. Blocking set in a graph G: $Y \subseteq V(G)$ such that $\alpha(G - Y) < \alpha(G)$.

Crucial for all positive and negative results: [Jansen and Bodlaender, 2011] maximum size of inclusion-minimal blocking sets for graphs in C.

INDEPENDENT SET/C-modulatorInput:A graph G, an integer ℓ , and a set $X \subseteq V(G)$ such that $G - X \in C$.Parameter:|X|.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \ge \ell$ such thatG[S] does not contain any edge?

 $\alpha(G)$: maximum size of a set of pairwise nonadjacent vertices in G. Blocking set in a graph G: $Y \subseteq V(G)$ such that $\alpha(G - Y) < \alpha(G)$.

Crucial for all positive and negative results: [Jansen and Bodlaender, 2011] maximum size of inclusion-minimal blocking sets for graphs in C.

mmbs(G): maximum size of a minimal blocking set of G.

INDEPENDENT SET/C-modulatorInput:A graph G, an integer ℓ , and a set $X \subseteq V(G)$ such that $G - X \in C$.Parameter:|X|.Question:Does G contain a set $S \subseteq V(G)$ with $|S| \ge \ell$ such thatG[S] does not contain any edge?

 $\alpha(G)$: maximum size of a set of pairwise nonadjacent vertices in G. Blocking set in a graph G: $Y \subseteq V(G)$ such that $\alpha(G - Y) < \alpha(G)$.

Crucial for all positive and negative results: [Jansen and Bodlaender, 2011] maximum size of inclusion-minimal blocking sets for graphs in C.

mmbs(G): maximum size of a minimal blocking set of G.

Parameterized complexity of computing mmbs(G).

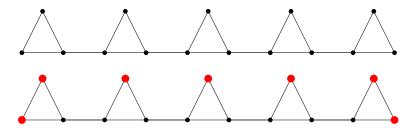
[Araújo, Bougeret, Campos, and S., 2023]

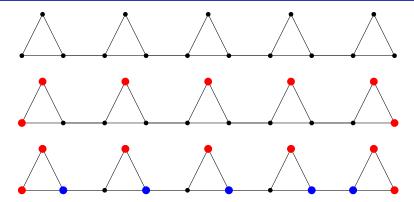
Maximum minimal blocking sets: examples

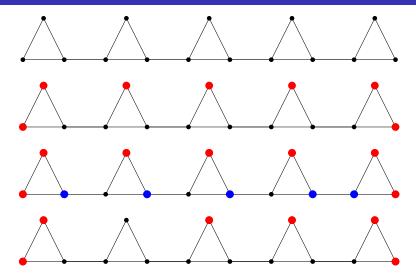
<ロ>< 団> < 団> < 豆> < 豆> < 豆> < 豆 > < 豆 > < 三 < へへ 41

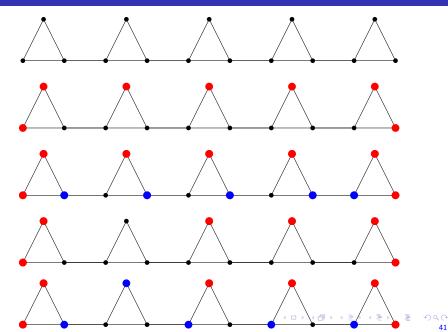
Maximum minimal blocking sets: examples

If G is bipartite with at least one edge, then mmbs(G) = 2.









Let C be such that $mmbs(G) \leq c$ for every $G \in C$ (like in all known cases).

Let C be such that $\operatorname{mmbs}(G) \leq c$ for every $G \in C$ (like in all known cases).

Recall that we are given a modulator $X \subseteq V(G)$ such that $G - X \in C$.

Let C be such that $\operatorname{mmbs}(G) \leq c$ for every $G \in C$ (like in all known cases).

Recall that we are given a modulator $X \subseteq V(G)$ such that $G - X \in C$.

Let $X' \subseteq X$ and $R \subseteq V(G) \setminus X$.

$$\operatorname{conf}_{R}(X') = \alpha(G[R]) - \alpha(G[R \setminus N_{G}(X')]).$$

That is, $\operatorname{conf}_R(X')$ measures how much smaller $\alpha(G[R])$ becomes when one is forbidden from picking vertices that are adjacent to X' in G.

Let C be such that $\operatorname{mmbs}(G) \leq c$ for every $G \in C$ (like in all known cases).

Recall that we are given a modulator $X \subseteq V(G)$ such that $G - X \in C$.

Let $X' \subseteq X$ and $R \subseteq V(G) \setminus X$.

$$\operatorname{conf}_{R}(X') = \alpha(G[R]) - \alpha(G[R \setminus N_{G}(X')]).$$

That is, $\operatorname{conf}_R(X')$ measures how much smaller $\alpha(G[R])$ becomes when one is forbidden from picking vertices that are adjacent to X' in G.

A chunk is a set $X' \subseteq X$ with $|X| \leq c$ such that G[X] is edgeless.

Let C be such that $\operatorname{mmbs}(G) \leq c$ for every $G \in C$ (like in all known cases).

Recall that we are given a modulator $X \subseteq V(G)$ such that $G - X \in C$.

Let $X' \subseteq X$ and $R \subseteq V(G) \setminus X$.

$$\operatorname{conf}_{R}(X') = \alpha(G[R]) - \alpha(G[R \setminus N_{G}(X')]).$$

That is, $\operatorname{conf}_R(X')$ measures how much smaller $\alpha(G[R])$ becomes when one is forbidden from picking vertices that are adjacent to X' in G.

A chunk is a set $X' \subseteq X$ with $|X| \leq c$ such that G[X] is edgeless.

Why chunks are useful: Let $R \subseteq V(G) \setminus X$. For every independent set $S_X \subseteq X$ such that $\operatorname{conf}_R(S_X) > 0$ there exists a chunk X', with $X' \subseteq S_X$, such that $\operatorname{conf}_R(X') > 0$.

To bound the size of G - X as a polynomial in |X|, two steps:

To bound the size of G - X as a polynomial in |X|, two steps:

(1) Bounding the number of connected components of G - X.

To bound the size of G - X as a polynomial in |X|, two steps:

- (1) Bounding the number of connected components of G X.
- (2) Bounding the size of each connected component of G X.

To bound the size of G - X as a polynomial in |X|, two steps:

- (1) Bounding the number of connected components of G X.
- (2) Bounding the size of each connected component of G X.

Typically done by a marking algorithm of the components of G - X with positive conflict, exploiting that the number of chunks in X is $\leq |X|^c$.

To bound the size of G - X as a polynomial in |X|, two steps:

- (1) Bounding the number of connected components of G X.
- (2) Bounding the size of each connected component of G X.

Typically done by a marking algorithm of the components of G - X with positive conflict, exploiting that the number of chunks in X is $\leq |X|^c$.

Let us focus on the first item, which is much easier:

To bound the size of G - X as a polynomial in |X|, two steps:

- (1) Bounding the number of connected components of G X.
- (2) Bounding the size of each connected component of G X.

Typically done by a marking algorithm of the components of G - X with positive conflict, exploiting that the number of chunks in X is $\leq |X|^c$.

Let us focus on the first item, which is much easier:

• For every chunk $X' \subseteq X$, mark at most |X| + 1 components R of G - X such that $\operatorname{conf}_R(X') > 0$.

To bound the size of G - X as a polynomial in |X|, two steps:

- (1) Bounding the number of connected components of G X.
- (2) Bounding the size of each connected component of G X.

Typically done by a marking algorithm of the components of G - X with positive conflict, exploiting that the number of chunks in X is $\leq |X|^c$.

Let us focus on the first item, which is much easier:

- For every chunk $X' \subseteq X$, mark at most |X| + 1 components R of G X such that $\operatorname{conf}_R(X') > 0$.
- Reduction rule: if R is non-marked, remove it and update $\ell' := \ell \alpha(G[R]).$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

To bound the size of G - X as a polynomial in |X|, two steps:

- (1) Bounding the number of connected components of G X.
- (2) Bounding the size of each connected component of G X.

Typically done by a marking algorithm of the components of G - X with positive conflict, exploiting that the number of chunks in X is $\leq |X|^c$.

Let us focus on the first item, which is much easier:

For every chunk X' ⊆ X, mark at most |X| + 1 components R of G - X such that conf_R(X') > 0.

• Reduction rule: if R is non-marked, remove it and update $\ell' := \ell - \alpha(G[R]).$

We keep at most $|X|^c \cdot (|X|+1)$ connected components of G - X.

To bound the size of G - X as a polynomial in |X|, two steps:

- (1) Bounding the number of connected components of G X.
- (2) Bounding the size of each connected component of G X.

Typically done by a marking algorithm of the components of G - X with positive conflict, exploiting that the number of chunks in X is $\leq |X|^c$.

Let us focus on the first item, which is much easier:

For every chunk X' ⊆ X, mark at most |X| + 1 components R of G - X such that conf_R(X') > 0.

• Reduction rule: if R is non-marked, remove it and update $\ell' := \ell - \alpha(G[R]).$

We keep at most $|X|^c \cdot (|X|+1)$ connected components of G - X.

Introduction to structural parameterizations

2 Graph classes closed under minors

3 Graph classes closed under (induced) subgraphs

- Some ideas of the techniques
 Upper bounds
 - Lower bounds

Useful tool: polynomial parameter transformations

Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems.

A polynomial parameter transformation (PPT) from A to B is an algorithm such that:

Instance (x, k) of A polynomial time Instance (x', k') of B(x, k) is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of B. (k' < poly(k). Let $A, B \subseteq \Sigma^* \times \mathbb{N}$ be two parameterized problems.

A polynomial parameter transformation (PPT) from A to B is an algorithm such that:

Instance (x, k) of A polynomial time Instance (x', k') of B(x, k) is a YES-instance of $A \Leftrightarrow (x', k')$ is a YES-instance of B. (k' < poly(k).

If A does not admit a polynomial kernel (under some hypothesis such as $NP \subseteq coNP/poly$), then neither does B. [Bodlaender, Thomassé, Yeo. 2011]

Theorem (Bougeret, Jansen, and S., 2024)

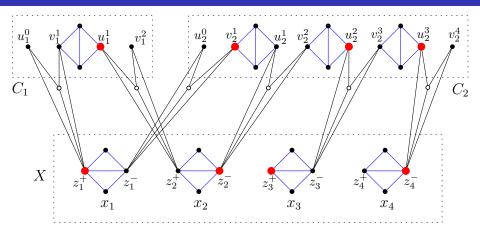
Let *H* be a biconnected graph that is not a clique. The *H*-SUBGRAPH HITTING problem does not admit a polynomial kernel parameterized by the size of a given vertex set *X* of the input graph *G* such that $\operatorname{ved}_{\mathcal{F}_H}^+(G-X) \leq 1$, unless NP \subseteq coNP/poly.

Theorem (Bougeret, Jansen, and S., 2024)

Let *H* be a biconnected graph that is not a clique. The *H*-SUBGRAPH HITTING problem does not admit a polynomial kernel parameterized by the size of a given vertex set *X* of the input graph *G* such that $\operatorname{ved}_{\mathcal{F}_H}^+(G-X) \leq 1$, unless NP \subseteq coNP/poly.

 $\begin{array}{l} \text{CNF-SAT} \text{ does not admit a polynomial kernel parameterized by the} \\ \text{number of variables of the input formula, unless NP } \subseteq \text{coNP/poly.} \\ \text{[Dell and van Melkebeek, 2014]} \end{array}$

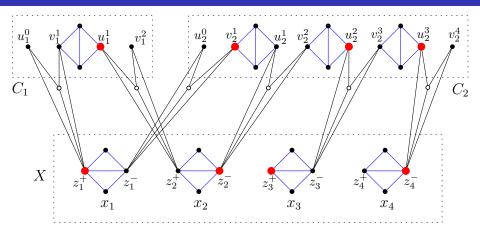
Idea of the reduction from CNF-SAT to H-SUBGRAPH HITTING



H is the diamond.

 ϕ consists of two clauses $C_1 = (x_1 \lor x_2)$ and $C_2 = (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3 \lor \bar{x}_4)$.

Idea of the reduction from CNF-SAT to H-SUBGRAPH HITTING



H is the diamond.

 ϕ consists of two clauses $C_1 = (x_1 \lor x_2)$ and $C_2 = (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3 \lor \bar{x}_4)$. Satisfying assignment: $\alpha(x_1) = 1$, $\alpha(x_2) = 0$, $\alpha(x_3) = 1$, and $\alpha(x_4) = 0$.

Gràcies!