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Abstract 

In this paper we present a method to localize a cylindral surface with only one perspective view. Based on a priori 
knowledge we find two axes in the image in order to obtain the three rotation angles between the cylindrical surface 
coordinate system and the camera coordinate system. Various applications of the proposed method are presented. © 1997 
Elsevier Science B.V. 
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I .  Introduction 

This paper deals with a new method to localize a cylindrical surface using a single perspective view. In 
monocular vision, a certain a priori knowledge is needed to perform localization and reconstruction in order to 
recover a 3D surface from image data. In this work, we limit our study to the case when the surface is a Straight 
Uniform General ized Cylinder (SUGC), 3 with closed cross-sections (circles or ellipses) or opened cross-sec- 
tions (parabolas, ellipses or circles). We show how to locate an image on the 3D surface and how to backproject  
the image in the 3D space. Cross-sections are detected on the cylindrical surface and projected in the image 
plane. With the projections of  these cross-sections, we detect two orthogonal axes giving us the necessary 
information to determine the three rotation angles of  the camera. 

This work is applied to works of  art in order to obtain images of  mural painting without geometrical  
distortions caused by the perspective view of  the curvature of  the surface. A lot of  work has been done in the 
domain of  monocular  vision surface localization. The zero-curvature points of  contours from an image can be 
used to solve the localization problem (Richetin et al., 1991). Localization has also been performed by 
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interpreting a triplet of image lines as the perspective transformation of a triplet of linear ridges of an object 
model (Dhome et at., 1989). It is also possible to determine the location and the orientation of a cylinder with a 
label (You et al., 1992) or by using the radius lighting direction (Wink et al., 1994). Another method for curved 
surface localization using a genetic algorithm is described to be used for works of art (Tanahashi et al., 1995). 

The structure of this paper is as follows. In Section 2, we provide some definitions concerning the camera 
model and generalized cylinders. Our method consists of three parts. The first part described in Section 3.1 
deals with finding the projection of the SUGC axis in the image based on a priori knowledge about the projected 
cross-sections (Puech and Chassery, 1996). In Section 3.2, we show how to detect the second axis in the image 
corresponding to the projection of one particular cross-section. After detecting these two axes, we are able to 
localize a cylindrical surface in the camera coordinate system in Section 3.3. In Section 4, synthetic images are 
used to validate our results and real images illustrate the efficiency of our method. 

2. Definitions 

2.1. Camera  model  

In this subsection, we present the notations and the coordinate systems used in this paper, shown in Fig. 1: 
• The camera coordinate system is defined by the view point O and the focal axis. The focal axis passes 

through O and is perpendicular to the image plane. The O x and Or axes are respectively parallel to the lines 
and columns of the image. 

• The picture coordinate system is a two-dimensional coordinate system (u ,v ) .  The coordinates are given in 
pixels and the equation of the image plane is z = f ,  where f is the focal distance of the camera expressed in 
mm. 

• The coordinate system of the surface is independent of the two others. The equation defining the surface is 
described in this coordinate system. 

4 
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Fig. 1. Different coordinate systems used in our method. 
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For the perspective projection and camera/ image transformation, we need to use the internal parameters of 
the camera: 

Perspective projection: a point P with the coordinates ( x , y , z )  t in the camera coordinate system is 
transformed in a point p(x ' ,  y', z ')  t in the image with: 

x' fx 
7. 

Y' fY (1) 
Z 

Z t ~ f .  

Camera/ image transformation changes the camera coordinates p(x ' ,  y', z ')  t to the image coordinates p(u, v). 
In the image coordinate system, the coordinates of this point are expressed in pixels. This transformation is 
defined by 

( ~= - k , x '  + u o, 
k~ y' + v o, (2) 

where (Uo,V o) are the coordinates of the intersection of the focal axis with the image plane corresponding to 
the image center, and ku,k ~ are the vertical and the horizontal scale factors given in pixels /mm. By 
grouping Eqs. (1) and (2) we obtain: 

= - k . f - +  Uo, 
z (3) 

k, , f  y + v0. 
z 

The relationships between the coordinate systems of the surface and of the camera are based on external 
parameters. These relationships are composed of three translations and three rotations. If P(X,Y ,Z)  t is a point 
of the surface, it will be transformed in the coordinate system of the camera in (x, y, z) t according to the relation 

(y) = R  Y + t ,  (4) 
z Z 

where t = (Tx,Ty,Tz) t represents the translation vector between O and O', and R is a 3 × 3 rotation matrix to 
localize the coordinate system of the surface in the camera coordinate system: ,olC°S°zsin°i)°S°y°sin°y(° o) 

R = R ~ R y R x = I s i n o z  cosoz 0 1 0 0 cosO x --sinOx . (5) 
0 --sinOy 0 cosOy 0 sinO x cosO x 

In our approach, in Section 3.3 we show how to determine the three rotation angles: 0 x, Oy and O z. 

2.2. Cylindrical surfaces 

The interpretation of the results will be done in Section 3.3 on a cylindrical surface. In this section we give 
some definitions about Generalised Cylinders (GC). 

A generalized cylinder is composed of a planar cross section shifted along a rotation axis. Shape and size 
could change along this axis. Using the definitions of (Shafer, 1985), a GC is straight when its axis is 
rectilinear, homogeneous when the transformation of the cross section is only scaled and uniform if shape and 
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size throughout the axis are constant. The cross-sections of  a CG is closed is the cross-sections are closed 
curves (circles, ellipses) or opened is they are opened curves (arcs, parabolas). 

We introduce a coordinate system (O',~,f,k') as illustrated in Fig. 1. The axis is denoted by / 'and the plane 
( j ,~ )  contains the cross sections. If P denotes a point on the Straight Homogeneous Generalized Cylinder 
(SHGC), we have 

O'P( h,O) = hi+ p( O)r( h)(cos  Of+ sin Ok'), (6)  

where (h ,O)~ [a,b] × [0,2~r], p(O) and r(h) are functions which identify, respectively, the reference cross- 
section and the scaling sweeping rule of the SHGC. Curves with 0 constant drawn on a SHGC are called 
meridians, and curves with h constant are called cross-sections. 4 The normal A 7 at point P is the cross-product 
between the two partial derivates (O/O0)O'P and (O/Oh)O'~ Forming this cross product, we derive the normal 

O O 
#= - -o ' fx  --off 

O0 Oh 

= [( p ' c o s  0 -  ps in  O ) r j + ( p ' s i n  O+ p c o s  O)rk'] X [~+  p r ' ( c o s  0 j + s i n  0k')] 

= _ p2 rr'i~+ r( p cos 0 + p'  sin 0 ) j +  r (  p sin 0 -  p'  cos 0)k ' ,  (7) 

where r = r( h ), r' = r' ( h ), p = p( O ) and p'  = p' ( O ). 

3. Searching for the location 

In this part, we show how to localize a SUGC in the camera coordinate system. In Section 3.1, we find the 
projection of the axis in the image plane. In Section 3.2, we explain how to find the cross-section which is 
projected in the image plane as a straight line, thus defining a second axis, in order to obtain the three rotation 
angles (Eq. (5)). Section 3.3 provides an interpretation of these two axes in the case of  a SUGC with Circular 
cross-sections. 

3.1. Detection of the reuolution axis 

We want to find the projection of the SUGC axis in the image plane. A lot of  work has already been done on 
this topic by using mathematical morphology (Brady, 1983), finding local symmetries (Ponce et al., 1989) or by 
using a method based on expectation-maximization (Glachet et al., 1989). 

Our approach is based on the analysis of  the shape of curves resulting from the projection of cross-sections 
existing on the cylindrical surface. Let us suppose that two curves Cj, C 2 in the image plane correspond to the 
projection of two cross-sections. Thus, in this approach we identify first the common normal P~ P2 of the two 
curves C a and C 2, as shown in Fig. 2. As described in (Puech et al., 1995) we use an iterative method. In the 
initialization phase, we select a point M~ on the curve C~. M 2 is defined as the intersection of the curve C 2 and 
the normal line to C 2 passing through M~. Afterwards, we determine a new point M~ on the curve C a where 
the normal line to C I passes through M 2. Next, we iterate the method successively for the curves C~ and C 2. 
This method stops when two successive points on the same curve are very close to each other. The sensitivity 
depends of the detection method and of the approximation algorithm of  the two curves (Puech et al., 1995). 

4 These notations will be used frequently in subsequent sections. 
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Fig. 2. Common normal for a curved surface. 
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The slope of  the straight line P1 P2 gives us the direction of  the SUGC axis. In the image coordinate system 
the equation of  this axis is 

u = A I . U  + B I, (8) 

where A l and B 1 are the coefficients of  the straight line determining this axis. 

3.2. Finding the equation of  the second axis 

Among all the cross-sections of  the cylindrical surface, only one is projected on the image plane as a straight 
line. Only the plane of  this cross-section contains the view point. The intersection of  this cross-section plane 
with the image plane defines the second axis. To find this second axis we show how to obtain a point P0 
belonging to the SUGC axis 5 and a curve for which the curvature is equal to zero, Fig. 3(a). We define the 
curvature of  P0, P1 and P2 as 

a ( P )  - a ( P i )  
K , =  lira (9) 

P - ~  Pi [PP;] ' 

where i ~ {0 . . . . .  2}, a ( P  i) is the angle of  the tangent to Pi, and I PPTI is the length of  the arc between P and Pi. 
For the curves between C 1 and C 2, when K 1 and K 2 have different signs, we can assume 6 that the curvature 
changes linearly throughout the axis P1P2. For each curve, the direction of  the normal line for the intersection 
point with the revolution axis is the same with the common normal as defined in Section 3.1. We define P0 as 
the intersection between the revolution axis and the curve for which the curvature is equal to zero. Then, this 
curve is the straight line defining the second axis, and these two axes are orthogonal. By including such 
information in Eq. (8), we obtain the equation of  the second axis (Puech and Chassery, 1997): 

v =  A l + v o +  • (10) 

5 We will also note the SUCG axis, the revolution axis. 
6 Because of the space limit we do not include the proof. 
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(b) 
Fig. 3. (a) The revolution and the second axes detected from two projected cross-sections, (b) Rotation 0y deducted from A .  

3.3. Eualuation of the rotation angles and interpretation of the results 

In this section, we evaluate the rotation angles of the camera. In order to localize the object in the camera 
coordinate system we want to match the two vectors ~' and ~, shown in Fig. 1. In order to obtain this matching 
we perform the rotation by the angle 0 z corresponding to the angle between u and the revolution axis, shown in 
Fig. 3(a): 

0 z = arctan(Al), (11) 

where A m is the coefficient of the straight line defined in Eq. (8). Let us denote by (A u, A v) the vector distance 
between the image center (u0,v 0) and P0, the intersection of the two axes. By assuming k L, = ku = k, we obtain 

{ 0x = a r c t a n ( ~ ) '  (12) 

0y = a r c t a n ( ~ ) ,  

as shown in Fig. 3(b). In order to match the intersection of the two axes with the image center we perform a 
rotation of the camera coordinates by the angles 0 x, Or and O z. 

In the case of a SUGC with circular cross-sections, noted cylinder, after these three rotations Eq. (6) becomes 

O'P( h,O) = h~+ R(cos Of+ sin 0k), (13) 

as shown in Fig. 4, with (h,O) ~ [a,b] X [0,2w] and R fixed. We derive the normal ATand the tangent i t o  the 
surface: 

A 7 =  (Rcos  O)f+ (Rsin  0)k ,  

t '= ( - R  sin 0 ) 7 +  (Rcos  0)k.  (14) 
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We shall prove now that, in the particular case of a cylinder, the projection of the revolution axis in the image 
plane after the rotations corresponds to the set of points belonging to the nearest meridian from the view point. 

We need to compute the length /~, i.e., the vector between the view point O and a point p(xp,O,f) t 
belonging to the revolution axis projection in the new image plane, as can be seen in Fig. 4: 

f = ~ . i +  yk. (15) 

Such a vector L i s  projected on a vector/~ on the plane ( f ,  k), as shown on Fig. 4. The minimal distance will 
be realized when E and t' are orthogonal. The scalar product is given by: 

i . E '=  -ROsin 0 = fRcos  0. (16) 
R cos 0 

To obtain ~ £ ' =  0, we have two possible solutions: 0---7r/2 or 0 = 3"rr/2. The only possible solution is 
0 = 3 + r / ~  and all the points belong to the nearest meridian of the cylinder from the view point: In fact, with 
00 '  = Txi + ~ k ,  the vector between a point P of the cylinder and O will be (h + Tx)i'+ R cos Oj + (R sin 0 + 
T~)k. So, let us denote by Doe this distance: 

Dop = ~/(h + Tx) 2 + R  2 + Tz 2 + 2RT z sin 0. (17) 

Dop is minimal for 0 = 3at /2  and equals to 

Doe = ~/( h + T~) 2 + (T  z - R )  2 . (18) 

Concerning the position of the second axis, it corresponds to the points belonging to a same cross-section, as 
described in Section 3.2. The second axis belongs to the cross-sectionjglane passing through the view point. 
After three rotations, this projected cross-section belongs to the plane (j,k). The intersection of the two axes in 
the picture gives us the projection of a single point of the surface. Only this point verifies the following relation: 

f_,x; 
l .  (19) 

t ,xtl 
in conclusion, by forming the scalar product of L and the tangent t '  to the surface, we obtain ~, the revolution 
axis vector. 

x = i  

O L 

Y = J  L' 

j k 

Fig. 4. Localization of a cylinder in the coordinate system of the camera. 
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Now let us localize this cylinder in the original camera coordinate system (O,x~,y ~, ~'), shown in Fig. 1. So, 
from Eq. (5), we obtain the inverse of the rotation matrix R-  J : 

I COs,. CO: SO:. COy 
R-J = CO=.SO~.SO s, - SO:.CO~ sO~.SO,,.SO~ + CO x.CO. 

CO:.SOy.CO~ + SO:.so, SO:.so,.co ~ - CO:.SO x 

-SOy ) 
co,..SOx , 
c0,,.c0~ 

(20) 

with CO i = COS O i and SO i = sin 0 i. We obtain then, for each vector of the object coordinate system: 

l i  = (COy'COz)~ '~ (CO":'XOx'SOv- XO:'COx)Y -~- (COz'SOy'GOx-]- SOz'SOx)~ 

= (so..COy)  + (so,.SOy.So: + co, c o : ) ;  + (soz.SOy.COx- co:.SOx)  (21) 

= ( - - S O y ) X  "~- (COv.SOx) ; q- (COy.COx) ~ 

By substituting Eq. (21) in the equation of the cylinder, Eq. (13), we obtain 

O'ff( h,O ) = [h.(COy.CO:) + R cos 0.(S0..C0~.) - R sin 0.(S0y)] ~' 

+ [h.(CO: .so~.so,. - SO: .CO~) + R cos O.(SOx.SOv.SO: + COx.CO: ) 

+ R sin 0.(C0y.S0 x )] f 

-~- [ h . (  COz.SOv.CO x ~- SO z .SOa ) --~ R c o s  O.( SO: .SOy.CO x - COz.XOx ) 

+R sin O.( CO~..COx) ] ~ (22) 

with (h,O)~ [a,b] × [0,2w] and R fixed. Using Eqs. (11) and (12), finally we show the localization of a 
cylindrical surface in the camera coordinate system, [ (h+RcosO) ) 

O'ff(h,O)= t 5 + ~ 2  I -RsinOA, (f2k;-+A ~ 

1 A~A~,(h+RcosOA1) -hAl fk+Rc°sOJk  ) 
+ ~+A~)  7f2k 2+A 2 

R sin 0fk A, f 
+ 

1 (  A~fk( h + R c°s OAl) ) 
- -  + hA 1A v + R cos OA~ 

-}- ~ 7f 2k2 + A2 

R sin Of2k 2 
+ 7f2k 2+A 2 ~/fZk2+A2 ' (23) 

with (h,O) ~ [a,b] × [0,2-rr] and R fixed. By assuming that the parameters of the surface are known, we are 
able to localize a cylinder in the camera coordinate system, by using A~, A ,  A and Eq. (23). 

4. Results 

In this section, we illustrate the efficacy of  our method on two different examples. The first example consists 
of  a synthetic image in order to validate our method. For this purpose, we map the original image Fig. 5(a) on a 
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i 

(a) (b) (c) 

(d) (e) (f) 
Fig. 5. (a) A synthet ic  image.  (b) The image  m a p p e d  on a cylinder.  (c) Edge  detection. (d) Selection o f  two projected cross-sect ions.  (e) The 

two axes. (f) Superposi t ion o f  (b) and  (e). 

Table  1 

Internal  parameters  o f  the s imulated camera  

focal  dis tance = 6 0 m m  resolut ion = 1 0 p i x e l s / m m  u 0 = 200pixe l s  

camera-sur face  distance = 4 0 0 m m  v 0 = 200pixe l s  

i 

(a) (b) 
Fig. 6. Flat tened pictures (a) With  real rotat ion angles,  (b) With  the rotation angles  found with our method.  

Table  2 

Compar i son  o f  the angle  values 

Real  rotat ion angles  Computed  rotat ion angle  Error  at the surface center  

0~ = - 12.00 ° 0 x = - 11.77 ° 1.61 m m  

0~ = 6.45 ° 0v = 5"59° 6.01 m m  
0: = 5.84 ° 0 z = 6.46 ° o 4 . 3 3 m m  
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(b) 
Fig. 7. (a) View of an arch of Acheiropeitos church. (b) Flattened picture after localization. 

cylindrical surface, as shown in Fig. 5(b). After using an edge detection (Cocquerez and Philipp, 1995), whose 
output is shown in Fig. 5(c) we select the projections of two cross-sections shown in Fig. 5(d). Fig. 5(e) 
illustrates the extraction of  the two axes in the image. In Fig. 5(f) we show the superposition of Fig. 5(e) with 
Fig. 5(b). 

\ 

............ ~ S~o~l watiJ 

~ lle.l~aloe of Ille t~o m 

~ v ~ , ~ n  iris 

J 

j lm~e ~mer 

Fig. 8. The localization of the two axes. 
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Table 3 
Internal parameters and computed parameters 

721 

focal distance = 3 2 5 m m  camera-surface distance = 6500mm 

resolution = 5 p i x e l s / m m  0 x = - 1.7 ° 

A u = 945 pixels  0y = 30.2 ° 

d~. = - 49 pixels 0 z = 2.9 ° 

In Table 1, we list the internal parameters of the simulated camera. 
Fig. 6(a) corresponds to the flattened image derived from the image Fig. 5(b) by using the real rotation 

angles. Fig. 6(b) corresponds to the flattened image after applying our method. A first remark concerns the 
degradation of the details which disappear during the projection phase. The two images are similar, and the 
image representation is well restored (circle, triangle). 

Table 2 presents a comparison between the real rotation angles and the rotation angles found by our method. 
The size of the surface is 300 mm, and the error of localization at the surface center (projection of the image 
center) is described in Table 2. 

The equation of the cylinder is: O'P(h,O) = h~+ 90(cos Of+ sin 0k'). In the camera coordinate system we 
localize this cylinder: 

O'/7( h, 0) = [0.988925h + 10.077705 cos 0 + 8.766828 sin 0 ] 2" 

+ [ -0 .129888h  + 87.347063 cos 0 -  18.271209 sin 0]y '  

+ [0.071806h + 19.207563 cos 0 + 87.688686 sin 0]z', 

with (h,O) ~ [a,b] X [0,2-rr]. 
Fig. 7(a) illustrates the application of our method to a mural painting of a Byzantine church. From this image 

we select the projections of two cross-sections as shown in Fig. 8 and we display the localization of the two 
perpendicular axes. In the Fig. 7(b), we display the image after localization, projection and flattening in order to 
obtain an image without any distortion due to the curved surface and the projective geometry. 

By assuming the following parameters: focal distance, camera-surface distance and resolution, we list the 
computed parameters in Table 3. 

5. Conclusion 

By using a priori knowledge about the geometry of surface, we have developed a 3D surface localization 
method based on a single perspective view. Two assumptions have been made: the scene is mapped on a SUGC, 
and cross-sections are detected in the cylindrical surface. We have shown how to find the two orthogonal axes 
in only one view of the curved surface and how to localize it in the camera coordinate system. The method has 
been illustrated by two different examples. In the first example we compare the image projection provided by 
our method with the ideal projection. The second one shows a direct application of this study. This work will be 
applied to improve the analysis of mural paintings on columns or vaults taken under different views (Chassery, 
1993), or to perform mosaicing in order to obtain more details (Jaillon and Montanvert, 1994). 
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